Screen for collusive behavior : a machine learning approach

dc.contributor.authorBantle, Melissade
dc.date.accessioned2024-04-08T09:05:51Z
dc.date.available2024-04-08T09:05:51Z
dc.date.created2024-03-15
dc.date.issued2024
dc.description.abstractThe paper uses a machine learning technique to build up a screen for collusive behavior. Such tools can be applied by competition authorities but also by companies to screen the behavior of their suppliers. The method is applied to the German retail gasoline market to detect anomalous behavior in the price setting of the filling stations. Therefore, the algorithm identifies anomalies in the data-generating process. The results show that various anomalies can be detected with this method. These anomalies in the price setting behavior are then discussed with respect to their implications for the competitiveness of the market.en
dc.identifier.swb1883605636
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/6944
dc.identifier.urnurn:nbn:de:bsz:100-opus-23003
dc.language.isoeng
dc.relation.ispartofseriesHohenheim discussion papers in business, economics and social sciences; 2024,01
dc.rights.licensepubl-mit-poden
dc.rights.licensepubl-mit-podde
dc.rights.urihttp://opus.uni-hohenheim.de/doku/lic_mit_pod.php
dc.subjectMachine learningen
dc.subjectCartel screenen
dc.subjectFuel retail marketen
dc.subject.ddc330
dc.subject.gndMaschinelles Lernende
dc.subject.gndPreispolitikde
dc.subject.gndKraftstoffde
dc.titleScreen for collusive behavior : a machine learning approachde
dc.type.dcmiTextde
dc.type.diniWorkingPaperde
local.accessuneingeschränkter Zugriffen
local.accessuneingeschränkter Zugriffde
local.bibliographicCitation.publisherPlaceUniversität Hohenheimde
local.export.bibtex@techreport{Bantle2024, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/6944}, author = {Bantle, Melissa}, title = {Screen for collusive behavior : a machine learning approach}, year = {2024}, school = {Universität Hohenheim}, series = {Hohenheim discussion papers in business, economics and social sciences}, }
local.export.bibtexAuthorBantle, Melissa
local.export.bibtexKeyBantle2024
local.export.bibtexType@techreport
local.faculty.number3de
local.institute.number520de
local.opus.number2300
local.series.issueNumber2024,01
local.series.titleHohenheim discussion papers in business, economics and social sciences
local.universityUniversität Hohenheimde
local.university.facultyFaculty of Business, Economics and Social Sciencesen
local.university.facultyFakultät Wirtschafts- und Sozialwissenschaftende
local.university.instituteInstitute for Economicsen
local.university.instituteInstitut für Volkswirtschaftslehrede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dp_2024_01_online.pdf
Size:
726.21 KB
Format:
Adobe Portable Document Format
Description:
Open Access Fulltext