Achtung: hohPublica wurde am 18.11.2024 aktualisiert. Falls Sie auf Darstellungsfehler stoßen, löschen Sie bitte Ihren Browser-Cache (Strg + Umschalt + Entf). *** Attention: hohPublica was last updated on November 18, 2024. If you encounter display errors, please delete your browser cache (Ctrl + Shift + Del).
 

Spectroscopy‐based prediction of 73 wheat quality parameters and insights for practical applications

dc.contributor.authorNagel‐Held, Johannes
dc.contributor.authorEl Hassouni, Khaoula
dc.contributor.authorLongin, Friedrich
dc.contributor.authorHitzmann, Bernd
dc.date.accessioned2024-08-19T12:58:27Z
dc.date.available2024-08-19T12:58:27Z
dc.date.issued2023de
dc.description.abstractBackground and Objectives: Quality assessment of bread wheat is time-consuming and requires the determination of many complex characteristics. Because of its simplicity, protein content prediction using near-infrared spectroscopy (NIRS) serves as the primary quality attribute in wheat trade. To enable the prediction of more complex traits, information from Raman and fluorescence spectra is added to the NIR spectra of whole grain and extracted flour. Model robustness is assessed by predictions across cultivars, locations, and years. The prediction error is corrected for the measurement error of the reference methods. Findings: Successful prediction, robustness testing, and measurement error correction were achieved for several parameters. Predicting loaf volume yielded a corrected prediction error RMSECV of 27.5 mL/100 g flour and an R² of 0.86. However, model robustness was limited due to data distribution, environmental factors, and temporal influences. Conclusions: The proposed method was proven to be suitable for applications in the wheat value chain. Furthermore, the study provides valuable insights for practical implementations. Significance and Novelty With up to 1200 wheat samples, this is the largest study on predicting complex characteristics comprising agronomic traits; dough rheological parameters measured by Extensograph, micro-doughLAB, and GlutoPeak; baking trial parameters like loaf volume; and specific ingredients, such as grain protein content, sugars, and minerals. en
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/16086
dc.identifier.urihttps://doi.org/10.1002/cche.10732
dc.language.isoengde
dc.rights.licensecc_by-ncde
dc.source1943-3638de
dc.sourceCereal Chemistry; Vol. 101, No. 1 (2023), 144-165de
dc.subjectWheat quality assessment
dc.subjectNear-infrared spectroscopy (NIRS)
dc.subjectProtein content prediction
dc.subjectRaman and fluorescence spectroscopy
dc.subjectLoaf volume prediction
dc.subjectModel robustness
dc.subjectAgronomic traits
dc.subjectDough rheological parameters
dc.subject.ddc630
dc.titleSpectroscopy‐based prediction of 73 wheat quality parameters and insights for practical applicationsen
dc.type.diniArticle
dcterms.bibliographicCitationCereal chemistry, 101 (2023), 1, 144-165. https://doi.org/10.1002/cche.10732. ISSN: 1943-3638
dcterms.bibliographicCitation.issn1943-3638
dcterms.bibliographicCitation.issue1
dcterms.bibliographicCitation.journaltitleCereal chemistry
dcterms.bibliographicCitation.volume101
local.export.bibtex@article{Nagel‐Held2023, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/16086}, doi = {10.1002/cche.10732}, author = {Nagel‐Held, Johannes and El Hassouni, Khaoula and Longin, Friedrich et al.}, title = {Spectroscopy‐based prediction of 73 wheat quality parameters and insights for practical applications}, journal = {Cereal chemistry}, year = {2023}, volume = {101}, number = {1}, }
local.export.bibtexAuthorNagel‐Held, Johannes and El Hassouni, Khaoula and Longin, Friedrich et al.
local.export.bibtexKeyNagel‐Held2023
local.export.bibtexType@article

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
CCHE_CCHE10732.pdf
Size:
2.72 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
cche10732-sup.zip
Size:
109.56 KB
Format:
Unknown data format