Achtung: hohPublica wurde am 18.11.2024 aktualisiert. Falls Sie auf Darstellungsfehler stoßen, löschen Sie bitte Ihren Browser-Cache (Strg + Umschalt + Entf). *** Attention: hohPublica was last updated on November 18, 2024. If you encounter display errors, please delete your browser cache (Ctrl + Shift + Del).
 

Outlier detection in structural time series models : the indicator saturation approach

dc.contributor.authorProietti, Tommasode
dc.contributor.authorMarczak, Martynade
dc.date.accessioned2024-04-08T08:50:00Z
dc.date.available2024-04-08T08:50:00Z
dc.date.created2014-09-15
dc.date.issued2014
dc.description.abstractStructural change affects the estimation of economic signals, like the underlying growth rate or the seasonally adjusted series. An important issue, which has attracted a great deal of attention also in the seasonal adjustment literature, is its detection by an expert procedure. The general–to–specific approach to the detection of structural change, currently implemented in Autometrics via indicator saturation, has proven to be both practical and effective in the context of stationary dynamic regression models and unit–root autoregressions. By focusing on impulse– and step–indicator saturation, we investigate via Monte Carlo simulations how this approach performs for detecting additive outliers and level shifts in the analysis of nonstationary seasonal time series. The reference model is the basic structural model, featuring a local linear trend, possibly integrated of order two, stochastic seasonality and a stationary component. Further, we apply both kinds of indicator saturation to detect additive outliers and level shifts in the industrial production series in five European countries.en
dc.identifier.swb414535006
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/5825
dc.identifier.urnurn:nbn:de:bsz:100-opus-9955
dc.language.isoeng
dc.relation.ispartofseriesFZID discussion papers; 90
dc.rights.licensepubl-ohne-poden
dc.rights.licensepubl-ohne-podde
dc.rights.urihttp://opus.uni-hohenheim.de/doku/lic_ubh.php
dc.subjectIndicator saturationen
dc.subjectSeasonal adjustmenten
dc.subjectStructural time series modelen
dc.subjectOutliersen
dc.subjectStructural changeen
dc.subjectGeneral–to–specific approachen
dc.subject.ddc330
dc.subject.gndStrukturwandelde
dc.subject.gndZeitreihede
dc.titleOutlier detection in structural time series models : the indicator saturation approachde
dc.type.dcmiTextde
dc.type.diniWorkingPaperde
local.accessuneingeschränkter Zugriffen
local.accessuneingeschränkter Zugriffde
local.bibliographicCitation.publisherPlaceUniversität Hohenheimde
local.export.bibtex@techreport{Proietti2014, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/5825}, author = {Proietti, Tommaso and Marczak, Martyna}, title = {Outlier detection in structural time series models : the indicator saturation approach}, year = {2014}, school = {Universität Hohenheim}, series = {FZID discussion papers}, }
local.export.bibtexAuthorProietti, Tommaso and Marczak, Martyna
local.export.bibtexKeyProietti2014
local.export.bibtexType@techreport
local.faculty.number7de
local.faculty.number3de
local.institute.number795de
local.institute.number520de
local.opus.number995
local.series.issueNumber90
local.series.titleFZID discussion papers
local.universityUniversität Hohenheimde
local.university.facultyLandesanstaltende
local.university.facultyFaculty of Business, Economics and Social Sciencesen
local.university.facultyFakultät Wirtschafts- und Sozialwissenschaftende
local.university.instituteForschungszentrum Innovation und Dienstleistungde
local.university.instituteInstitute for Economicsen
local.university.instituteInstitut für Volkswirtschaftslehrede

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fzid_dp_2014_90_Beissinger.pdf
Size:
485.74 KB
Format:
Adobe Portable Document Format
Description:
Open Access Fulltext