Institut für Lebensmittelchemie
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/8
Browse
Browsing Institut für Lebensmittelchemie by Classification "630"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Publication Acrocomia aculeata fruits from three regions in Costa Rica: An assessment of biometric parameters, oil content and oil fatty acid composition to evaluate industrial potential(2020) Alfaro-Solís, Jose David; Montoya-Arroyo, Alexander; Jiménez, Víctor M.; Arnáez-Serrano, Elizabeth; Pérez, Jason; Vetter, Walter; Frank, Jan; Lewandowski, IrisDue to increased global demand for vegetable oils, diversification of the supply chain with sustainable sources is necessary. Acrocomia aculeata has recently gained attention as a multi-purpose, sustainable crop for oil production. However, the information necessary for effective selection of promising varieties for agricultural production is lacking. The aim of this study was to assess variability in fruit morphology and oil composition of individual Acrocomia aculeata plants growing wild in different climatic regions of Costa Rica. Fruits at the same ripening stage were collected at three locations, and biometric features, oil content, fatty acid composition of oils from kernels and pulp, as well as fiber composition of husks were determined. Biometric parameters showed high variability among the regions assessed. Moreover, oil content and relative proportions of unsaturated fatty acids were higher at the most tropical location, whereas lauric acid content was lowest under these conditions, indicating a potential environmental effect on oil composition. Pulp oil content correlated positively with annual precipitation and relative humidity, but no clear relation to temperature was observed. The oil chemical composition was similar to that reported for Elaeis guineensis, suggesting that Acrocomia aculeata from Costa Rica may be a suitable alternative for industrial applications currently based on African palm oil. Analysis of husks as a coproduct revealed the possibility of obtaining materials with high lignin and low water and ash contents that could be used as a solid bioenergy source. In conclusion, Acrocomia aculeata oil is a promising alternative for industrial applications currently based on African palm oil and byproducts of its oil production could find additional use as a renewable energy source.Publication Identification and quantification of dicarboxylic fatty acids in head tissue of farmed Nile tilapia (Oreochromis niloticus)(2021) Lehnert, Katja; Rashid, Mamun M.; Barman, Benoy Kumar; Vetter, WalterNile tilapia (Oreochromis niloticus) was grown in Bangladesh with four different feeding treatments as part of a project that aims to produce fish in a cost-effective way for low-income consumers in developing countries. Fillet and head tissue was analysed because both tissues were destined for human consumption. Gas chromatography with mass spectrometry (GC/MS) analyses of transesterified fatty acid methyl ester extracts indicated the presence of ~ 50 fatty acids. Major fatty acids in fillet and head tissue were palmitic acid and oleic acid. Both linoleic acid and polyunsaturated fatty acids with three or more double bonds were presented in quantities > 10% of total fatty acids in fillet, but lower in head tissue. Erucic acid levels were below the newly proposed tolerable daily intake in the European Union, based on the consumption of 200 g fillet per day. Moreover, further analysis produced evidence for the presence of the dicarboxylic fatty acid azelaic acid (nonanedioic acid, Di9:0) in head tissue. To verify this uncommon finding, countercurrent chromatography was used to isolate Di9:0 and other dicarboxylic acids from a technical standard followed by its quantification. Di9:0 contributed to 0.4–1.3% of the fatty acid profile in head tissue, but was not detected in fillet. Fish fed with increasing quantities of flaxseed indicated that linoleic acid was the likely precursor of Di9:0 in the head tissue samples.Publication Microbial incubations of 8‐phenyloctanoic acid and furan fatty acids in rumen fluid(2022) Wiedmaier‐Czerny, Nina; Blumberg, Olga; Schulz, Tobias; Kemmler, Franziska; Titze, Natascha; Wild, Katharina; Vetter, WalterAims: The digestive tract of ruminants is specialized in the digestion of various plant components. One of the largest parts of the stomach is the so-called rumen, which contains a large number of micro-organisms that may degrade or modify fatty acids, for example by β-oxidation, chain elongation and/or hydrogenation. Methods and Results: Here we performed incubation experiments with less com- mon fatty acids by in vitro incubations with rumen fluid of fistulated cows for 24 h. Sample extracts were analysed by gas chromatography with mass spectrometry. As substrates, we selected one phenyl fatty acid and four furan fatty acids (FuFAs). All studied fatty acids were degraded by β-oxidation (two or three chain-shortening steps) while chain elongation or saturation of the aromatic part (terminal phenyl or central furan moiety) was not observed in any case. Conclusions: The percentage of β-oxidation products was low, especially in the case of the FuFAs. This could be due to the rather long carbon number of FuFAs (19–22 carbon atoms). In addition, compound-specific differences in the degradation rates were observed in our experiments. Significance and Impact of the Study: Our results produce evidence that FuFAs, which are valuable antioxidants that are known to be present in various feed items of the cow, can be effectively passed on the rumen into the milk.Publication Previtamin D2, vitamin D2, and vitamin D4 amounts in different mushroom species irradiated with ultraviolet (UV) light and occurrence of structurally related photoproducts(2024) Sommer, Katrin; Hillinger, Marissa; Vetter, WalterMushrooms are rich in ergosterol and ergosta‐5,7‐dienol, which can be partly converted into vitamin D2 and D4 through ultraviolet (UV) light exposure. Typically, mushrooms have very low vitamin D contents, but it can be increased by UV irradiation. This process generates additional photoisomers scarcely studied in mushrooms due to analytical challenges. Here, we developed a new solid phase extraction (SPE) method to separate vitamin D2, vitamin D4, and other tri‐ and pentacyclic photoisomers from the much higher abundant ergosterol. Subsequent GC/MS analysis enabled the detection of ten photoisomers in eight UV‐treated mushroom species, including vitamin D2 (previtamin D2, tachysterol2, two suprasterol2 and trans‐vitamin D2 isomers) and vitamin D4 (previtamin D4). Quantitated vitamin D2 contents of 10–540 µg/100 g dry weight agreed well with the sparse literature data available for the investigated mushroom species. In addition, previtamin D2 (nd–1950 µg/100 g dry weight) and vitamin D4 (10–140 µg/100 g dw) were quantified in the samples. The content and photoproduct compositions varied considerably between different mushroom species. Practical applications: The novel SPE method can be applied to study the vitamin D and photoisomer content of mushrooms.Publication Tocochromanol profiles in Chlorella sorokiniana, Nannochloropsis limnetica and Tetraselmis suecica confirm the presence of 11′-α-tocomonoenol in cultured microalgae independently of species and origin(2022) Montoya-Arroyo, Alexander; Lehnert, Katja; Muñoz-González, Alejandra; Schmid-Staiger, Ulrike; Vetter, Walter; Frank, Jan11′-α-Tocomonoenol (11′-αT1) is structurally related to vitamin E and has been quantified in the microalgae Tetraselmis sp. and Nannochloropsis oceanica. However, it is not known whether 11′-αT1 is present in other microalgae independent of species and origin. The aim of this study was to analyze the tocochromanol profiles of Chlorella sorokiniana, Nannochloropsis limnetica, and Tetraselmis suecica and to determine if 11′-αT1 is present in these microalgae. Cultured microalgae were freeze-dried and the presence and identity of α-tocomonoenols were confirmed by LC-MSn (liquid chromatography coupled to mass spectroscopy) and GC-MS (gas chromatography coupled to mass spectroscopy). Tocochromanol profiles were determined by HPLC-FLD (liquid chromatography with fluorescence detection) and fatty acid profiles (as fatty acid methyl esters; FAME) by GC-MS. As confirmed by LC-MSn and GC-MS, 11′-αT1 was the dominant αT1 isomer in cultured microalgae instead of 12′-αT1, the isomer also known as marine-derived tocopherol. αT1 represented less than 1% of total tocochromanols in all analyzed samples and tended to be more abundant in microalgae with higher proportions of polyunsaturated fatty acids. In conclusion, our findings confirm that αT1 is not restricted to terrestrial photosynthetic organisms, but can also accumulate in microalgae of different species, with 11′-αT1—and not the marine-derived tocopherol (12′-αT1)—as the predominant αT1 isomer.