Core Facility Hohenheim
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/16626
Browse
Browsing Core Facility Hohenheim by Issue Date
Now showing 1 - 13 of 13
- Results Per Page
- Sort Options
Publication Orotic acid production by Yarrowia lipolytica under conditions of limited pyrimidine(2021) Swietalski, Paul; Hetzel, Frank; Klaiber, Iris; Pross, Eva; Seitl, Ines; Fischer, LutzOrotic acid (OA) is an intermediate of the pyrimidine biosynthesis with high industrial relevance due to its use as precursor for production of biochemical pyrimidines or its use as carrier molecule in drug formulations. It can be produced by fermentation of microorganisms with engineered pyrimidine metabolism. In this study, we surprisingly discovered the yeast Yarrowia lipolytica as a powerful producer of OA. The overproduction of OA in the Y. lipolytica strain PO1f was found to be caused by the deletion of the URA3 gene which prevents the irreversible decarboxylation of OA to uridine monophosphate. It was shown that the lack of orotidine‐5′‐phosphate decarboxylase was the reason for the accumulation of OA inside the cell since a rescue mutant of the URA3 deletion in Y. lipolytica PO1f completely prevented the OA secretion into the medium. In addition, pyrimidine limitation in the cell massively enhanced the OA accumulation followed by secretion due to intense overflow metabolism during bioreactor cultivations. Accordingly, supplementation of the medium with 200 mg/L uracil drastically decreased the OA overproduction by 91%. OA productivity was further enhanced in fed‐batch cultivation with glucose and ammonium sulfate feed to a maximal yield of 9.62 ± 0.21 g/L. Y. lipolytica is one of three OA overproducing yeasts described in the literature so far, and in this study, the highest productivity was shown. This work demonstrates the potential of Y. lipolytica as a possible production organism for OA and provides a basis for further metabolic pathway engineering to optimize OA productivity.Publication Household food waste quantification and cross-examining the official figures: A study on household wheat bread waste in Shiraz, Iran(2022) Ghaziani, Shahin; Ghodsi, Delaram; Schweikert, Karsten; Dehbozorgi, Gholamreza; Faghih, Shiva; Mohabati, Shabnam; Doluschitz, ReinerThe global consumer food waste (FW) estimates are mainly based on modeling data obtained from governments. However, a major data gap exists in FW at the household level, especially in developing countries. Meanwhile, the reliability of the existing data is questionable. This study aimed to quantify wheat bread waste (HBW) in Shiraz, Iran, and cross-examine the governmental HBW data. Face-to-face waste recall questionnaire interviews were conducted in 419 households from December 2018 to August 2019. A multistage sampling strategy consisting of stratification, clustering, and systematic sampling was employed. Moreover, we carried out a comprehensive document review to extract and analyze the official HBW data. The results revealed that the HBW in Shiraz is 1.80%—the waste amounts for traditional bread and non-traditional bread were 1.70% and 2.50%, respectively. The survey results were compared with the previous official data, revealing a substantial contradiction with the 30% HBW reported between 1991 and 2015. Possible reasons for this disparity are explored in this paper. Although our results cannot be generalized to other food commodities and locations, our findings suggest that considering the substantial likelihood of bias in the official data, policymakers should conduct more FW measurements and re-evaluate the accuracy of the existing data.Publication New approaches to manage Asian soybean rust (Phakopsora pachyrhizi) using Trichoderma spp. or their antifungal secondary metabolites(2022) El-Hasan, Abbas; Walker, Frank; Klaiber, Iris; Schöne, Jochen; Pfannstiel, Jens; Voegele, Ralf T.Attempts have been made to determine the in vitro and in planta suppressive potential of particular Trichoderma strains (T16 and T23) and their secondary metabolites (SMs) against Asian soybean rust (ASR) incited by Phakopsora pachyrhizi. Aside from the previously identified SMs 6-pentyl-α-pyrone (6PAP) and viridiofungin A (VFA), the chemical structures of harzianic acid (HA), iso-harzianic acid (iso-HA), and harzianolide (HZL) were characterized in this study. Our results indicate that exposure of urediospores to 200 ppm 6PAP completely inhibits germination. A slightly higher dosage (250 ppm) of HZL and VFA reduces germination by 53.7% and 44%, respectively. Germ tube elongation seems more sensitive to 6PAP than urediospore germination. On detached leaves, application of conidia of T16 and T23 results in 81.4% and 74.3% protection, respectively. Likewise, 200 ppm 6PAP recorded the highest ASR suppression (98%), followed by HZL (78%) and HA (69%). Treatment of undetached leaves with 6PAP, HA, or HZL reduces ASR severity by 84.2%, 65.8%, and 50.4%, respectively. Disease reduction on the next, untreated trifoliate by T23 (53%), T16 (41%), HZL (42%), and 6PAP (32%) suggests a translocation or systemic activity of the SMs and their producers. To our knowledge, this study provides the first proof for controlling ASR using antifungal SMs of Trichoderma. Our findings strongly recommend the integration of these innovative metabolites, particularly 6PAP and/or their producers in ASR management strategies.Publication Surfactin shows relatively low antimicrobial activity against Bacillus subtilis and other bacterial model organisms in the absence of synergistic metabolites(2022) Lilge, Lars; Ersig, Nadine; Hubel, Philipp; Aschern, Moritz; Pillai, Evelina; Klausmann, Peter; Pfannstiel, Jens; Henkel, Marius; Morabbi Heravi, Kambiz; Hausmann, RudolfSurfactin is described as a powerful biosurfactant and is natively produced by Bacillus subtilis in notable quantities. Among other industrially relevant characteristics, antimicrobial properties have been attributed to surfactin-producing Bacillus isolates. To investigate this property, stress approaches were carried out with biotechnologically established strains of Corynebacterium glutamicum, Bacillus subtilis, Escherichia coli and Pseudomonas putida with the highest possible amounts of surfactin. Contrary to the popular opinion, the highest growth-reducing effects were detectable in B. subtilis and E. coli after surfactin treatment of 100 g/L with 35 and 33%, respectively, while P. putida showed no growth-specific response. In contrast, other antimicrobial biosurfactants, like rhamnolipids and sophorolipids, showed significantly stronger effects on bacterial growth. Since the addition of high amounts of surfactin in defined mineral salt medium reduced the cell growth of B. subtilis by about 40%, the initial stress response at the protein level was analyzed by mass spectrometry, showing induction of stress proteins under control of alternative sigma factors σB and σW as well as the activation of LiaRS two-component system. Overall, although surfactin is associated with antimicrobial properties, relatively low growth-reducing effects could be demonstrated after the surfactin addition, challenging the general claim of the antimicrobial properties of surfactin.Publication Exploration of surfactin production by newly isolated Bacillus and Lysinibacillus strains from food‐related sources(2022) Akintayo, Stephen Olusanmi; Treinen, Chantal; Vahidinasab, Maliheh; Pfannstiel, Jens; Bertsche, Ute; Fadahunsi, I.; Oellig, Claudia; Granvogl, Michael; Henkel, Marius; Lilge, Lars; Hausmann, RudolfAs a lipopeptide (LP), surfactin exhibits properties, such as emulsifying and dispersing ability, which are useful in food industry. Discovery of new LP‐producing strains from food sources is an important step towards possible application of surfactin in foods. A total of 211 spore‐forming, Gram‐positive, and catalase‐positive bacterial strains were isolated from fermented African locust beans (iru) and palm oil mill effluents in a screening process and examined for their ability to produce surfactin. This was achieved by a combination of methods, which included microbiological and molecular classification of strains, along with chemical analysis of surfactin production. Altogether, 29 isolates, positive for oil spreading and emulsification assays, were further identified with 16S rDNA analysis. The strains belonged to nine species including less commonly reported strains of Lysinibacillus, Bacillus flexus, B. tequilensis, and B. aryabhattai. The surfactin production was quantitatively and qualitatively analysed by high‐performance thin‐layer chromatography and liquid chromatography‐mass spectrometry (LC–MS). Confirmation of surfactin by MS was achieved in all the 29 strains. Highest surfactin production capability was found in B. subtilis IRB2‐A1 with a titre of 1444·1 mg L−1.Publication Characterization of Bacillus velezensis UTB96, demonstrating improved lipopeptide production compared to the strain B. velezensis FZB42(2022) Vahidinasab, Maliheh; Adiek, Isabel; Hosseini, Behnoush; Akintayo, Stephen Olusanmi; Abrishamchi, Bahar; Pfannstiel, Jens; Henkel, Marius; Lilge, Lars; Vögele, Ralf ; Hausmann, RudolfBacillus strains can produce various lipopeptides, known for their antifungal properties. This makes them attractive metabolites for applications in agriculture. Therefore, identification of productive wild-type strains is essential for the development of biopesticides. Bacillus velezensis FZB42 is a well-established strain for biocontrol of plant pathogens in agriculture. Here, we characterized an alternative strain, B. velezensis UTB96, that can produce higher amounts of all three major lipopeptide families, namely surfactin, fengycin, and iturin. UTB96 produces iturin A. Furthermore, UTB96 showed superior antifungal activity towards the soybean fungal pathogen Diaporthe longicolla compared to FZB42. Moreover, the additional provision of different amino acids for lipopeptide production in UTB96 was investigated. Lysine and alanine had stimulatory effects on the production of all three lipopeptide families, while supplementation of leucine, valine and isoleucine decreased the lipopeptide bioproduction. Using a 45-litre bioreactor system for upscaling in batch culture, lipopeptide titers of about 140 mg/L surfactin, 620 mg/L iturin A, and 45 mg/L fengycin were achieved. In conclusion, it becomes clear that B. velezensis UTB96 is a promising strain for further research application in the field of agricultural biological controls of fungal diseases.Publication Dynamic changes in O-GlcNAcylation regulate osteoclast differentiation and bone loss via nucleoporin 153(2022) Li, Yi-Nan; Chen, Chih-Wei; Trinh-Minh, Thuong; Zhu, Honglin; Matei, Alexandru-Emil; Györfi, Andrea-Hermina; Kuwert, Frederic; Hubel, Philipp; Ding, Xiao; Manh, Cuong Tran; Xu, Xiaohan; Liebel, Christoph; Fedorchenko, Vladyslav; Liang, Ruifang; Huang, Kaiyue; Pfannstiel, Jens; Huang, Min-Chuan; Lin, Neng-Yu; Ramming, Andreas; Schett, Georg; Distler, Jörg H. W.; Li, Yi-Nan; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Chen, Chih-Wei; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Trinh-Minh, Thuong; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Zhu, Honglin; Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China; Matei, Alexandru-Emil; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Györfi, Andrea-Hermina; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Kuwert, Frederic; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Hubel, Philipp; Core Facility Hohenheim, University of Hohenheim, Stuttgart, Germany; Ding, Xiao; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Manh, Cuong Tran; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Xu, Xiaohan; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Liebel, Christoph; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Fedorchenko, Vladyslav; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Liang, Ruifang; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Huang, Kaiyue; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Pfannstiel, Jens; Core Facility Hohenheim, University of Hohenheim, Stuttgart, Germany; Huang, Min-Chuan; Graduate Institute of Anatomy and Cell biology, National Taiwan University College of Medicine, Taipei, Taiwan; Lin, Neng-Yu; Graduate Institute of Anatomy and Cell biology, National Taiwan University College of Medicine, Taipei, Taiwan; Ramming, Andreas; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Schett, Georg; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany; Distler, Jörg H. W.; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, GermanyBone mass is maintained by the balance between osteoclast-induced bone resorption and osteoblast-triggered bone formation. In inflammatory arthritis such as rheumatoid arthritis (RA), however, increased osteoclast differentiation and activity skew this balance resulting in progressive bone loss. O-GlcNAcylation is a posttranslational modification with attachment of a single O-linked β-D-N-acetylglucosamine (O-GlcNAc) residue to serine or threonine residues of target proteins. Although O-GlcNAcylation is one of the most common protein modifications, its role in bone homeostasis has not been systematically investigated. We demonstrate that dynamic changes in O-GlcNAcylation are required for osteoclastogenesis. Increased O-GlcNAcylation promotes osteoclast differentiation during the early stages, whereas its downregulation is required for osteoclast maturation. At the molecular level, O-GlcNAcylation affects several pathways including oxidative phosphorylation and cell-cell fusion. TNFα fosters the dynamic regulation of O-GlcNAcylation to promote osteoclastogenesis in inflammatory arthritis. Targeted pharmaceutical or genetic inhibition of O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) arrests osteoclast differentiation during early stages of differentiation and during later maturation, respectively, and ameliorates bone loss in experimental arthritis. Knockdown of NUP153, an O-GlcNAcylation target, has similar effects as OGT inhibition and inhibits osteoclastogenesis. These findings highlight an important role of O-GlcNAcylation in osteoclastogenesis and may offer the potential to therapeutically interfere with pathologic bone resorption.Publication The antioxidant potential of various wheat crusts correlates with AGE content independently of acrylamide(2023) Wächter, Kristin; Longin, Carl Friedrich H.; Winterhalter, Patrick R.; Bertsche, Ute; Szabó, Gábor; Simm, AndreasEpidemiological studies have indicated that the consumption of whole-grain products is associated with a reduced risk of cardiovascular diseases, type II diabetes, and cancer. In the case of bread, high amounts of antioxidants and advanced glycation end products (AGEs) are formed during baking by the Maillard reaction in the bread crust; however, the formation of potentially harmful compounds such as acrylamide also occurs. This study investigated the antioxidant responses of different soluble extracts from whole-grain wheat bread crust extracts (WBCEs) in the context of the asparagine, AGE, and acrylamide content. For that, we analyzed nine bread wheat cultivars grown at three different locations in Germany (Hohenheim, Eckartsweier, and Oberer Lindenhof). We determined the asparagine content in the flour of the 27 wheat cultivars and the acrylamide content in the crust, and measured the antioxidant potential using the induced expression of the antioxidant genes GCLM and HMOX1 in HeLa cells. Our study uncovered, for the first time, that the wheat crust’s antioxidant potential correlates with the AGE content, but not with the acrylamide content. Mass spectrometric analyses of WBCEs for identifying AGE-modified proteins relevant to the antioxidant potential were unsuccessful. However, we did identify the wheat cultivars with a high antioxidant potential while forming less acrylamide, such as Glaucus and Lear. Our findings indicate that the security of BCEs with antioxidative and cardioprotective potential can be improved by choosing the right wheat variety.Publication Characterization ofantifungal properties of lipopeptide-producing Bacillus velezensis strains and their proteome-based response to the phytopathogens, Diaporthe spp(2023) Akintayo, Stephen Olusanmi; Hosseini, Behnoush; Vahidinasab, Maliheh; Messmer, Marc; Pfannstiel, Jens; Bertsche, Ute; Hubel, Philipp; Henkel, Marius; Hausmann, Rudolf; Vögele, Ralf; Lilge, LarsIntroduction: B. velezensis strains are of interest in agricultural applications due to their beneficial interactions with plants, notable through their antimicrobial activity. The biocontrol ability of two new lipopeptides-producing B. velezensis strains ES1-02 and EFSO2-04, against fungal phytopathogens of Diaporthe spp., was evaluated and compared with reference strains QST713 and FZB42. All strains were found to be effective against the plant pathogens, with the new strains showing comparable antifungal activity to QST713 and slightly lower activity than FZB42. Methods: Lipopeptides and their isoforms were identified by high-performance thin-layer chromatography (HPTLC) and mass spectrometric measurements. The associated antifungal influences were determined in direct in vitro antagonistic dual culture assays, and the inhibitory growth effects on Diaporthe spp. as representatives of phytopathogenic fungi were determined. The effects on bacterial physiology of selected B. velezensis strains were analyzed by mass spectrometric proteomic analyses using nano-LC-MS/MS. Results and Discussion: Lipopeptide production analysis revealed that all strains produced surfactin, and one lipopeptide of the iturin family, including bacillomycin L by ES1-02 and EFSO2-04, while QST713 and FZB42 produced iturin A and bacillomycin D, respectively. Fengycin production was however only detected in the reference strains. As a result of co-incubation of strain ES1-02 with the antagonistic phytopathogen D. longicolla, an increase in surfactin production of up to 10-fold was observed, making stress induction due to competitors an attractive strategy for surfactin bioproduction. An associated global proteome analysis showed a more detailed overview about the adaptation and response mechanisms of B. velezensis, including an increased abundance of proteins associated with the biosynthesis of antimicrobial compounds. Furthermore, higher abundance was determined for proteins associated with oxidative, nitrosative, and general stress response. In contrast, proteins involved in phosphate uptake, amino acid transport, and translation were decreased in abundance. Altogether, this study provides new insights into the physiological adaptation of lipopeptide-producing B. velezensis strains, which show the potential for use as biocontrol agents with respect to phytopathogenic fungi.Publication Chemometric approach for profiling of metabolites of potential antioxidant activity in Apiaceae species based on LC-PDA-ESI-MS/MS and FT-NIR(2023) Atta, Noha H.; Handoussa, Heba; Klaiber, Iris; Hitzmann, Bernd; Hanafi, Rasha S.Chemometrics is a tool for data mining and unlocking the door for solving big data queries. Apiaceae is a family species which is commonly cultivated worldwide. Although members of this species are widely used as antioxidant, antibacterial, antifungal, and anti-inflammatory agents, their metabolites profiling remains ambiguous. Based on WHO support, chemometrics has been used in evaluating the quality and authenticity of the herbal products. The objective of this study is to profile and characterize phenolic metabolites in nine species from Egyptian cultivars and three different species of German cultivars from the Apiaceae family using multivariate analysis after LC-PDA-ESI-MS/MS and near infrared spectroscopy data are generated. Principal component analysis was successfully applied to distinguish between the nine Egyptian cultivars and the three German cultivars, and hierarchical cluster analysis also confirmed this distinctive clustering. Partial least square regression (PLS-R) models showed a relationship between phytochemicals and antioxidant activities. The metabolites responsible for the clustering pattern and variables important for projection (VIP) were identified, being twelve amongst nine Egyptian cultivar samples and thirteen amongst the Egyptian cultivar and the German cultivar comparison. The identified VIPs were also correlated with the antioxidant activity using PLS-R. In conclusion, the study showed novelty in the application of hyphenated analytical techniques and chemometrics that assist in quality control of herbal medicine.Publication Lipid remodeling of contrasting maize (Zea mays L.) hybrids under repeated drought(2023) Kränzlein, Markus; Schmöckel, Sandra M.; Geilfus, Christoph-Martin; Schulze, Waltraud X.; Altenbuchinger, Michael; Hrenn, Holger; Roessner, Ute; Zörb, ChristianThe role of recovery after drought has been proposed to play a more prominent role during the whole drought-adaption process than previously thought. Two maize hybrids with comparable growth but contrasting physiological responses were investigated using physiological, metabolic, and lipidomic tools to understand the plants’ strategies of lipid remodeling in response to repeated drought stimuli. Profound differences in adaptation between hybrids were discovered during the recovery phase, which likely gave rise to different degrees of lipid adaptability to the subsequent drought event. These differences in adaptability are visible in galactolipid metabolism and fatty acid saturation patterns during recovery and may lead to a membrane dysregulation in the sensitive maize hybrid. Moreover, the more drought-tolerant hybrid displays more changes of metabolite and lipid abundance with a higher number of differences within individual lipids, despite a lower physiological response, while the responses in the sensitive hybrid are higher in magnitude but lower in significance on the level of individual lipids and metabolites. This study suggests that lipid remodeling during recovery plays a key role in the drought response of plants.Publication Mineral and phytic acid content as well as phytase activity in flours and breads made from different wheat species(2023) Longin, C. Friedrich. H.; Afzal, Muhammad; Pfannstiel, Jens; Bertsche, Ute; Melzer, Tanja; Ruf, Andrea; Heger, Christoph; Pfaff, Tobias; Schollenberger, Margit; Rodehutscord, MarkusWheat is of high importance for a healthy and sustainable diet for the growing world population, partly due to its high mineral content. However, several minerals are bound in a phytate complex in the grain and unavailable to humans. We performed a series of trials to compare the contents of minerals and phytic acid as well as phytase activity in several varieties from alternative wheat species spelt, emmer and einkorn with common wheat. Additionally, we investigated the potential of recent popular bread making recipes in German bakeries to reduce phytic acid content, and thus increase mineral bioavailability in bread. For all studied ingredients, we found considerable variance both between varieties within a species and across wheat species. For example, whole grain flours, particularly from emmer and einkorn, appear to have higher mineral content than common wheat, but also a higher phytic acid content with similar phytase activity. Bread making recipes had a greater effect on phytic acid content in the final bread than the choice of species for whole grain flour production. Recipes with long yeast proofing or sourdough and the use of whole grain rye flour in a mixed wheat bread minimized the phytic acid content in the bread. Consequently, optimizing food to better nourish a growing world requires close collaboration between research organizations and practical stakeholders ensuring a streamlined sustainable process from farm to fork.Publication Comparison of aqueous and lactobacterial-fermented Mercurialis perennis L. (Dog’s Mercury) extracts with respect to their immunostimulating activity(2023) Lorenz, Peter; Zilkowski, Ilona; Mailänder, Lilo K.; Klaiber, Iris; Nicolay, Sven; Garcia-Käufer, Manuel; Zimmermann-Klemd, Amy M.; Turek, Claudia; Stintzing, Florian C.; Kammerer, Dietmar R.; Gründemann, CarstenLactic acid (LA) fermentation of dog’s mercury (M. perennis L.) herbal parts was investigated in samples inoculated with either Lactobacteria (Lactobacillus plantarum and Pediococcus pentosaceus, LBF) or whey (WF). Depending on fermentation time, LA concentrations were monitored in a range of 3.4–15.6 g/L with a concomitant pH decline from 6.5 to 3.9. A broad spectrum of cinnamic acids depsides containing glucaric, malic and 2-hydroxyglutaric acids along with quercetin and kaempferol glycosides were detected by LC-DAD-ESI-MSn. Moreover, in this study novel constituents were also found both in unfermented and fermented extracts. Furthermore, amino acids and particular Lactobacteria metabolites such as biogenic amines (e.g., putrescine, 4-aminobutyric acid, cadaverine) and 5-oxoproline were assigned in WF extracts by GC-MS analysis after silylation. Enhanced NFκB and cytokine expression (IL-6, TNFα, IL-8 and IL-1β) was induced by all extracts, both non-fermented and fermented, in NFκB-THP-1 reporter cells, showing a concentration-dependent immunostimulatory effect. The WF extracts were tested for micronuclei formation in THP-1 cells and toxicity in luminescent bacteria (V. fischeri), whereby no mutagenic or toxic effects could be detected, which corroborates their safe use in pharmaceutical remedies.