Agricultural Engineering Research, Volume 07 (2001)
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/7127
Browse
Browsing Agricultural Engineering Research, Volume 07 (2001) by Person "Griebel, Michael"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Tracer Measurements for the Validation of Odour Dispersion Models(2001) Boeker, Peter; Wittkowski, Martin; Wallenfang, Oliver; Koster, Frank; Griebel, Michael; Diekmann, Bernd; Schulze Lammers, PeterDispersion models are computer-based numerical models which are spe- cially developed for the prognosis of the dispersion behaviour of sub- stances in natural wind flows. They integrate different theoretical sub- models from fluid, gas, and particle dynamics. Since efficient modelling requires simplifications and additional assumptions, the simulation re- sults provided by these models must be compared with real-world data in order to prove the validity of the model. This is called validation. Odour perception at the input location is determined by the fluctuations of local immission concentration. Odour perception begins only when the threshold value is exceeded. Therefore, the determination of values in ex- cess of the threshold level requires that, in addition to the mean input value, its fluctuation be known. Due to the turbulence of natural wind flows, odorants are diluted to a varying degree during transmission. Mo- reover, changing wind directions lead to a shift in the main direction of propagation, which causes the odour plume to meander. The new NaSt3D model was examined as an example of the validation of odour dispersion models. For this reason, field measurements were taken in or- der to determine odour propagation. A mobile tracer measurement technique with simultaneous recording of the meteorological data, the measuring positions, and the tracer concentration allowed measurements with high temporal and spatial resolution to be carried out. Comparisons of model calculations and measurements showed a high degree of consi- stency and proved the applicability of the NaSt3D model for detailed odour dispersion simulation.