Browsing by Person "Sailer, Gregor"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Characteristics and anaerobic co-digestion of press water from wood fuel preparation and digested sewage sludge(2022) Sailer, Gregor; Empl, Florian; Kuptz, Daniel; Silberhorn, Martin; Ludewig, Darwin; Lesche, Simon; Pelz, Stefan; Müller, JoachimTechnical drying of harvested wood fuels is heat and energy consuming, while natural pre-drying in the forest, e.g., in stacks or storage piles, is accompanied by energy losses through natural degradation processes. Dewatering of energy wood by mechanical pressing is an innovative method to reduce the moisture content prior to thermal drying while producing press waters (PW, also referred to as wood juice) as a by-product. To date, the characteristics and utilization potentials of PW are largely unknown. In this study, three different spruce- and poplar-based PW were analyzed for their characteristics such as dry matter (DM), organic dry matter (oDM) concentration, pH-value, element concentration or chemical compounds. Additionally, they were used for anaerobic digestion (AD) experiments with digested sewage sludge (DSS) serving as inoculum. The fresh matter-based DM concentrations of the PW were between 0.4 and 3.2%, while oDM concentrations were between 87 and 89%DM. The spruce-based PW were characterized by lower pH-values of approx. 4.4, while the poplar-based PW was measured at pH 8. In the AD experiments, DSS alone (blank variant) achieved a specific methane yield of 95 ± 26 mL/goDM, while the mixture of spruce-based PW and DSS achieved up to 160 ± 12 mL/goDM, respectively. With further research, PW from wood fuel preparation offer the potential to be a suitable co-substrate or supplement for AD processes.Publication Coupled biogas and fiber production from agricultural residues and energy crops with steam explosion treatment(2023) Hülsemann, Benedikt; Baumgart, Marian; Lenz, Leonhard; Elviliana,; Föllmer, Marie; Sailer, Gregor; Dinkler, Konstantin; Oechsner, HansThe global demand for packaging materials and energy is constantly increasing, requiring the exploration of new concepts. In this work, we presented a bioeconomic concept that uses steam explosion and phase separation to simultaneously generate fibers for the packaging industry and biogas substrate for the energy sector. The concept focused on fiber-rich residues and fiber-rich ecological energy crops from agriculture. Feasibility of the concept in the laboratory using feedstocks, including Sylvatic silphia silage, Nettle silage, Miscanthus, Apple pomace, Alfalfa stalks, and Flax shives was confirmed. Our results showed that we were able to separate up to 26.2% of the methane potential while always extracting a smaller percentage of up to 17.3% of organic dry matter (ODM). Specific methane yields of 297–486 LCH4 kgODM−1 in the liquid and 100–286 LCH4 kgODM−1 in the solid phase were obtained. The solid phases had high water absorption capacities of 216–504% due to the steam explosion, while the particle size was not significantly affected. The concept showed high potential, especially for undried feedstock.Publication Impact of thermo-mechanical pretreatment of sargassum muticum on anaerobic co-digestion with wheat straw(2023) Hütter, Miriam; Sailer, Gregor; Hülsemann, Benedikt; Müller, Joachim; Poetsch, JensSargassum muticum (SM) is an invasive macroalgal species seasonally occurring in large quantities. While generally suitable for anaerobic digestion, recent studies resulted in low specific methane yields (SMYs), presumably due to salt, polyphenol, and high fiber contents of this marine biomass. In this study, the specific biogas yield (SBY) and SMY of SM alone as well as in co-digestion with wheat straw (WS) were investigated in batch tests at process temperatures of 44 ± 1.4 °C with a retention time of approx. 40 d. The pretreatment variants of SM were examined with regard to desalination and disintegration to potentially improve digestibility and to enhance the overall performance in anaerobic digestion. A sole mechanical treatment (pressing) and a thermo-mechanical treatment (heating and pressing) were tested. Batch assays showed that pressing increased the SMY by 15.1% whereas heating and pressing decreased the SMY by 15.7% compared to the untreated variant (87.64 ± 8.72 mL/gVS). Both anaerobic digestion experiments generally showed that co-digestion with WS can be recommended for SM, but the observed SBY and SMY were still similar to those of other studies in which SM was not pretreated. The mechanical pretreatment of SM, however, offers the potential to enhance the SMY in the anaerobic digestion of SM with WS, but further research is necessary to identify the optimum upgrading approaches since the overall SMY of SM is relatively low compared to other substrates that are commonly used in anaerobic digestion. In addition to anaerobic digestion, SM as an already available biomass could also be of interest for further utilization approaches such as fiber production.Publication Lab-scale carbonation of wood ash for CO2-sequestration(2021) Koch, Robin; Sailer, Gregor; Paczkowski, Sebastian; Pelz, Stefan; Poetsch, Jens; Müller, JoachimThis study evaluated the CO2 sequestration potential with combustion ashes in the aqueous phase. The aim was to provide a cost-effective carbon sequestration method for combustion unit operators (flue gas cleaning) or biogas producers (biogas upgrading). Therefore, two separate test series were executed to identify the carbonation efficiency (CE) of bottom wood ash (1) at different mixing ratios with water in batch experiments and (2) under dynamic flow conditions. It was furthermore evaluated whether subsequent use of the carbonated wood ash for soil amendment could be possible and whether the process water could be passed into the sewage. The batch test series showed that different mixing ratios of wood ash and water had an influence on the CE. The flow series showed that the mean CE varied between approximately 14% and 17%. Thus, the ash proved to be suitable for carbonation processes. The process water was dischargeable, and the carbonated wood ash has potential for chalking, as no legal thresholds were exceeded. Therefore, wood ash carbonation could be used as a low-tech CO2 sequestration technology. Compared to existing energy consuming and cost intensive carbon capture and storage technologies, sequestration with ash could be beneficial, as it represents a low-tech approach.