Achtung: hohPublica wurde am 18.11.2024 aktualisiert. Falls Sie auf Darstellungsfehler stoßen, löschen Sie bitte Ihren Browser-Cache (Strg + Umschalt + Entf). *** Attention: hohPublica was last updated on November 18, 2024. If you encounter display errors, please delete your browser cache (Ctrl + Shift + Del).
 

A new version of this entry is available:

Loading...
Thumbnail Image

Abstract (English)

This study evaluated the CO2 sequestration potential with combustion ashes in the aqueous phase. The aim was to provide a cost-effective carbon sequestration method for combustion unit operators (flue gas cleaning) or biogas producers (biogas upgrading). Therefore, two separate test series were executed to identify the carbonation efficiency (CE) of bottom wood ash (1) at different mixing ratios with water in batch experiments and (2) under dynamic flow conditions. It was furthermore evaluated whether subsequent use of the carbonated wood ash for soil amendment could be possible and whether the process water could be passed into the sewage. The batch test series showed that different mixing ratios of wood ash and water had an influence on the CE. The flow series showed that the mean CE varied between approximately 14% and 17%. Thus, the ash proved to be suitable for carbonation processes. The process water was dischargeable, and the carbonated wood ash has potential for chalking, as no legal thresholds were exceeded. Therefore, wood ash carbonation could be used as a low-tech CO2 sequestration technology. Compared to existing energy consuming and cost intensive carbon capture and storage technologies, sequestration with ash could be beneficial, as it represents a low-tech approach.

File is subject to an embargo until

This is a correction to:

A correction to this entry is available:

This is a new version of:

Notes

Publication license

Publication series

Published in

Energies, 14 (2021), 21, 7371. https://doi.org/10.3390/en14217371. ISSN: 1996-1073
Faculty
Institute

Examination date

Supervisor

Edition / version

Citation

DOI

ISSN

ISBN

Language
English

Publisher

Publisher place

Classification (DDC)
620 Engineering

Original object

Standardized keywords (GND)

Sustainable Development Goals

BibTeX

@article{Koch2021, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/16874}, doi = {10.3390/en14217371}, author = {Koch, Robin and Sailer, Gregor and Paczkowski, Sebastian et al.}, title = {Lab-Scale Carbonation of Wood Ash for CO2-Sequestration}, journal = {Energies}, year = {2021}, }
Share this publication