Institut für Landwirtschaftliche Betriebslehre
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/16
Browse
Browsing Institut für Landwirtschaftliche Betriebslehre by Sustainable Development Goals "12"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication The need for consumer-focused household food waste reduction policies using dietary patterns and socioeconomic status as predictors: a study on wheat bread waste in Shiraz, Iran(2022) Ghaziani, Shahin; Ghodsi, Delaram; Schweikert, Karsten; Dehbozorgi, Gholamreza; Rasekhi, Hamid; Faghih, Shiva; Doluschitz, ReinerCurrent household food waste (HFW) reduction plans usually focus on raising consumer awareness, which is essential but insufficient because HFW is predominantly attributed to unconscious behavioral factors that vary across consumer groups. Therefore, identifying such factors is crucial for predicting HFW levels and establishing effective plans. This study explored the role of dietary patterns (DP) and socioeconomic status (SES) as predictors of HBW using linear and non-linear regression models. Questionnaire interviews were performed in 419 households in Shiraz during 2019. A multilayer sampling procedure including stratification, clustering, and systematic sampling was used. Three main DPs, i.e., unhealthy, Mediterranean, and traditional, were identified using a food frequency questionnaire. Results indicated that a one-unit rise in the household’s unhealthy DP score was associated with an average increase in HBW of 0.40%. Similarly, a one-unit increase in the unhealthy DP score and the SES score increased the relative likelihood of bread waste occurrence by 25.6% and 14.5%, respectively. The comparison of findings revealed inconsistencies in HFW data, and therefore the necessity of studying HFW links to factors such as diet and SES. Further investigations that explore HFW associations with household characteristics and behavioral factors will help establish contextual and effective consumer-focused plans.Publication Setting life cycle assessment (LCA) in a future-oriented context: the combination of qualitative scenarios and LCA in the agri-food sector(2022) Voglhuber-Slavinsky, Ariane; Zicari, Alberto; Smetana, Sergiy; Moller, Björn; Dönitz, Ewa; Vranken, Liesbet; Zdravkovic, Milena; Aganovic, Kemal; Bahrs, Enno; Voglhuber-Slavinsky, Ariane; Institute of Farm Management, University of Hohenheim, Stuttgart, Germany; Zicari, Alberto; Division of Bioeconomics, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium; Smetana, Sergiy; DIL German Institute of Food Technologies e.V, Quakenbrück, Germany; Moller, Björn; Competence Center Foresight, Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe, Germany; Dönitz, Ewa; Competence Center Foresight, Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe, Germany; Vranken, Liesbet; Division of Bioeconomics, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium; Zdravkovic, Milena; DIL German Institute of Food Technologies e.V, Quakenbrück, Germany; Aganovic, Kemal; DIL German Institute of Food Technologies e.V, Quakenbrück, Germany; Bahrs, Enno; Institute of Farm Management, University of Hohenheim, Stuttgart, GermanyBy combining qualitative scenarios and life cycle assessment (LCA), we place the latter in a larger context. This study outlines the importance of the integration of future perspectives into LCA, and also the significance of taking changes in the environment of technology into account, rather than just technological development itself. Accordingly, we focused on adapting the background system of an attributional LCA in the agri-food sector. The proposed technology was assumed not have evolved in the considered time horizon. In this context, the objectives of this paper were twofold: (i) to methodologically prove the applicability of integrating qualitative scenarios into LCA and (ii) to focus on changes in the background system, which is sometimes overlooked in the context of future-oriented LCA. This allowed to evaluate the future potential of different technologies, assessing their environmental impact under uncertain future developments. Methodologically, the qualitative information from scenarios was transformed into quantitative data, which was successively fed into the life cycle inventory (LCI) of the LCA approach. This point of integration into the second phase of LCA translates into future changes in the entire environment in which a technology is used. This means that qualitatively described scenario narratives need to be converted into value estimates in order to be incorporated into the LCA model. A key conclusion is that changes in the background of an LCA—the changing framework expressed through the inventory database—can be very important for the environmental impact of emerging technologies. This approach was applied to a food processing technology to produce apple juice. The proposed methodology enables technology developers to make their products future-proof and robust against socioeconomic development. In addition, the market perspective, if spelled out in the scenarios, can be integrated, leading to a more holistic picture of LCA with its environmental focus, while simultaneously empowering actors to make the right strategic decisions today, especially when considering the long investment cycles in the agri-food sector.