Fakultät Naturwissenschaften
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/1
Biologie, Ernährungs-wissenschaften und Lebensmittelwissenschaften sind die Schwerpunkte der Fakultät. Die Forschung befasst sich mit Schlüsselthemen der Life Sciences.
Homepage: https://natur.uni-hohenheim.de/
Browse
Browsing Fakultät Naturwissenschaften by Sustainable Development Goals "12"
Now showing 1 - 20 of 56
- Results Per Page
- Sort Options
Publication Almond-like aroma formation of acid whey by Ischnoderma benzoinum fermentation: potential application in novel beverage development(2025) Hannemann, Lea; Klauss, Raphaela; Gleissle, Anne; Heinrich, Patrick; Braunbeck, Thomas; Zhang, YanyanTo address the sourish off-aroma of acid whey and enhance its upcycling, a new basidiomycete Ischnoderma benzoinum -mediated fermentation system was developed using pure acid whey as the sole substrate. A pleasant sweetish and marzipan-like odor was perceived after fermentation within 7 d at 24 °C in darkness, which was shaped from key contributors including 4-methoxybenzaldehyde (odor activity value (OAV) 878), 3-methylbutanal (OAV 511), 3,4-dimethoxybenzaldehyde (OAV 50), and benzaldehyde (OAV 28). The typical sweetish and almond-like odor persisted well after ultrahigh-temperature processing, though its intensity decreased slightly. Concurrently, the fermentation reduced lactose from 52 to 20 g/L but increased the contents of essential amino acids like threonine, leucine, and lysine. No significant cytotoxicity or genotoxicity differences were found between fermented and unfermented whey. Overall, the study highlights the capability of I. benzoinum fermentation to enhance the flavor of acid whey, offering a promising approach for creating nutritional and flavorful acid-whey-based products.Publication The antiviral activity of polyphenols(2025) Burkard, Markus; Piotrowsky, Alban; Leischner, Christian; Detert, Katja; Venturelli, Sascha; Marongiu, Luigi; Burkard, Markus; Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany; Piotrowsky, Alban; Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany; Leischner, Christian; Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany; Detert, Katja; Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany; Venturelli, Sascha; Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany; Marongiu, Luigi; Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, GermanyPolyphenols are secondary metabolites produced by a large variety of plants. These compounds that comprise the class of phenolic acids, stilbenes, lignans, coumarins, flavonoids, and tannins have a wide range of employment, from food production to medical usages. Among the beneficial applications of polyphenols, their antiviral activity is gaining importance due to the increased prevalence of drug‐resistant viruses such as herpes and hepatitis B viruses. In the present review, we provide an overview of the most promising or commonly used antiviral polyphenols and their mechanisms of action focusing on their effects on enveloped viruses of clinical importance (double‐stranded linear or partially double‐stranded circular DNA viruses, negative sense single‐stranded RNA viruses with nonsegmented or segmented genomes, and positive sense single‐stranded RNA viruses). The present work emphasizes the relevance of polyphenols, in particular epigallocatechin‐3‐gallate and resveratrol, as alternative or supportive antivirals. Polyphenols could interfere with virtually all steps of viral infection, from the adsorption to the release of viral particles. The activity of polyphenols against viruses is especially relevant given the risk of widespread outbreaks associated with viruses, remarked by the recent COVID‐19 pandemic.Publication Application of AprX from Pseudomonas paralactis for the improvement of the emulsifying properties of milk, plant and insect protein and estimation of their hydrolysate’s bitter potential(2025) Volk, Veronika; Ewert, Jacob; Longhi, Miriam; Stressler, Timo; Fischer, LutzProtein properties can be modified by selective enzymatic hydrolysis. In this study, the alkaline metalloendopeptidase AprX (Serralysin; EC 3.4.24.40) from Pseudomonas paralactis was used for the tailored hydrolysis of different food proteins resulting in the production of protein hydrolysates with improved emulsifying properties. Sodium caseinate, wheat gluten and buffalo worm protein were used for AprX hydrolysis at 40 °C and pH 8 to cover a spectrum of different protein sources. A maximum degree of hydrolysis (DH) of 13.1 ± 0.2%, 14.2 ± 0.1% and 20.7 ± 0.1% was reached for sodium caseinate, wheat gluten and the worm protein, respectively. The corresponding hydrolysate properties were analyzed regarding their particle size, peptide composition, solubility, viscosity, surface hydrophobicity and interfacial tension. The emulsifying properties were investigated by the oil-droplet size, ζ-potential and stability of emulsions prepared from the hydrolysates. Using partially hydrolyzed sodium caseinate (DH = 10.6%) as an emulsifier lead to an eightfold increase of the emulsion stability (t1/2 = 180 ± 0 min) compared to unhydrolyzed sodium caseinate. The emulsion stability using wheat gluten hydrolysates (DH = 11.9%) was increased 30-fold (t1/2 = 45 ± 5 min). Simultaneously, the solubility of gluten was increased by 60%. Buffalo worm hydrolysates (DH = 14.6%) had a twofold (t1/2 = 85 ± 5 min) increased emulsion stability. In conclusion, AprX can be used to improve the solubility and emulsifying properties of food proteins at a relatively high DH.Publication Assessing the capabilities of 2D fluorescence monitoring in microtiter plates with data-driven modeling for secondary substrate limitation experiments of Hansenula polymorpha(2023) Berg, Christoph; Herbst, Laura; Gremm, Lisa; Ihling, Nina; Paquet-Durand, Olivier; Hitzmann, Bernd; Büchs, JochenBackground: Non-invasive online fluorescence monitoring in high-throughput microbioreactors is a well-established method to accelerate early-stage bioprocess development. Recently, single-wavelength fluorescence monitoring in microtiter plates was extended to measurements of highly resolved 2D fluorescence spectra, by introducing charge-coupled device (CCD) detectors. Although introductory experiments demonstrated a high potential of the new monitoring technology, an assessment of the capabilities and limits for practical applications is yet to be provided. Results: In this study, three experimental sets introducing secondary substrate limitations of magnesium, potassium, and phosphate to cultivations of a GFP-expressing H. polymorpha strain were conducted. This increased the complexity of the spectral dynamics, which were determined by 2D fluorescence measurements. The metabolic responses upon growth limiting conditions were assessed by monitoring of the oxygen transfer rate and extensive offline sampling. Using only the spectral data, subsequently, partial least-square (PLS) regression models for the key parameters of glycerol, cell dry weight, and pH value were generated. For model calibration, spectral data of only two cultivation conditions were combined with sparse offline sampling data. Applying the models to spectral data of six cultures not used for calibration, resulted in an average relative root-mean-square error (RMSE) of prediction between 6.8 and 6.0%. Thus, while demanding only sparse offline data, the models allowed the estimation of biomass accumulation and glycerol consumption, even in the presence of more or less pronounced secondary substrate limitation. Conclusion: For the secondary substrate limitation experiments of this study, the generation of data-driven models allowed a considerable reduction in sampling efforts while also providing process information for unsampled cultures. Therefore, the practical experiments of this study strongly affirm the previously claimed advantages of 2D fluorescence spectroscopy in microtiter plates.Publication Bioaccessibility and anti-inflammatory activity in Caco-2 cells of phytochemicals from industrial by-products of coffee (Coffea arabica L.)(2025) Jiménez-Gutiérrez, Milena; Zielinski, Christian; Esquivel, Patricia; Frank, Jan; Irías-Mata, Andrea; Jiménez-Aspee, FelipeCoffee by-products are rich in nutrients and bioactive compounds in free soluble form and bound to cell wall components. These compounds undergo chemical changes during gastrointestinal digestion, affecting their bioaccessibility and bioactivity. This study is the first to investigate coffee by-products from industrial wet processing to evaluate the impact of simulated gastrointestinal digestion on their phytochemical composition and subsequent anti-inflammatory activity in Caco-2 cells. Digestion significantly reduced the stability and solubility of main compounds; however, digested bioaccessible by-products still exhibited anti-inflammatory properties, reducing IL-6, IL-8, and TNF-α levels. Correlation analysis identified rutin, quercetin-3-glycoside, caffeine and 5-caffeoylquinic acid as strongly linked to cytokine suppression, suggesting key roles and possible synergies. These results highlight the potential of coffee by-products as functional ingredients targeting intestinal inflammation. Future work should confirm in vivo efficacy, optimize extraction at scale, and address regulatory requirements to support industrial application and promote circular economy benefits.Publication Characterization of the major odor-active compounds in fresh rhizomes and leaves of Houttuynia cordata by comparative aroma extract dilution analysis(2025) Xu, Zhenli; Liu, Jing; Kreissl, Johanna; Oellig, Claudia; Vetter, Walter; Steinhaus, Martin; Frank, Stephanie; Rodov, VictorHouttuynia cordata is a culinary herb from Asia. Its edible rhizomes and leaves have a fishy aroma, the molecular background of which was unknown. A comparative aroma extract dilution analysis applied to fresh rhizomes and leaves resulted in 44 and 41 odorants, respectively, 38 of which were present with FD factors ≥1 in both samples. The odorant with the highest FD factors, whether in the rhizomes or leaves, was identified as metallic, soapy, fishy smelling 3-oxododecanal. Toward clarifying its tautomeric composition, quantum calculations suggested a predominance of the enol forms in the plant. However, the form perceived at the sniffing port during GC–O remained unclear.Publication Comparison of binding properties of a laccase-treated pea protein-sugar beet pectin mixture with methylcellulose in a bacon-type meat analogue(2022) Moll, Pascal; Salminen, Hanna; Stadtmueller, Lucie; Schmitt, Christophe; Weiss, JochenA bacon-type meat analogue consists of different structural layers, such as textured protein and a fat mimetic. To obtain a coherent and appealing product, a suitable binder must glue those elements together. A mixture based on pea protein and sugar beet pectin (r = 2:1, 25% w/w solids, pH 6) with and without laccase addition and a methylcellulose hydrogel (6% w/w) serving as benchmark were applied as binder between textured protein and a fat mimetic. A tensile strength test, during which the layers were torn apart, was performed to measure the binding ability. The pea protein–sugar beet pectin mixture without laccase was viscoelastic and had medium and low binding strength at 25 °C (F ≤ 3.5 N) and 70 °C (F ≈ 1.0 N), respectively. The addition of laccase solidified the mixture and increased binding strength at 25 °C (F ≥ 4.0 N) and 70 °C (F ≈ 2.0 N), due to covalent bonds within the binder and between the binder and the textured protein or the fat mimetic layers. Generally, the binding strength was higher when two textured protein layers were glued together. The binding properties of methylcellulose hydrogel was low (F ≤ 2.0 N), except when two fat mimetic layers were bound due to hydrophobic interactions becoming dominant. The investigated mixed pectin–pea protein system is able serve as a clean-label binder in bacon-type meat analogues, and the application in other products seems promising.Publication Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis(2020) Vahidinasab, Maliheh; Lilge, Lars; Reinfurt, Aline; Pfannstiel, Jens; Henkel, Marius; Morabbi Heravi, Kambiz; Hausmann, RudolfBackground: Plipastatin is a potent Bacillus antimicrobial lipopeptide with the prospect to replace conventional antifungal chemicals for controlling plant pathogens. However, the application of this lipopeptide has so far been investigated in a few cases, principally because of the yield in low concentration and unknown regulation of biosynthesis pathways. B. subtilis synthesizes plipastatin by a non-ribosomal peptide synthetase encoded by the ppsABCDE operon. In this study, B. subtilis 3NA (a non-sporulation strain) was engineered to gain more insights about plipastatin mono-production. Results: The 4-phosphopantetheinyl transferase Sfp posttranslationally converts non-ribosomal peptide synthetases from inactive apoforms into their active holoforms. In case of 3NA strain, sfp gene is inactive. Accordingly, the first step was an integration of a repaired sfp version in 3NA to construct strain BMV9. Subsequently, plipastatin production was doubled after integration of a fully expressed degQ version from B. subtilis DSM10T strain (strain BMV10), ensuring stimulation of DegU-P regulatory pathway that positively controls the ppsABSDE operon. Moreover, markerless substitution of the comparably weak native plipastatin promoter (Ppps) against the strong constitutive promoter Pveg led to approximately fivefold enhancement of plipastatin production in BMV11 compared to BMV9. Intriguingly, combination of both repaired degQ expression and promoter exchange (Ppps::Pveg) did not increase the plipastatin yield. Afterwards, deletion of surfactin (srfAA-AD) operon by the retaining the regulatory comS which is located within srfAB and is involved in natural competence development, resulted in the loss of plipastatin production in BMV9 and significantly decreased the plipastatin production of BMV11. We also observed that supplementation of ornithine as a precursor for plipastatin formation caused higher production of plipastatin in mono-producer strains, albeit with a modified pattern of plipastatin composition. Conclusions: This study provides evidence that degQ stimulates the native plipastatin production. Moreover, a full plipastatin production requires surfactin synthetase or some of its components. Furthermore, as another conclusion of this study, results point towards ornithine provision being an indispensable constituent for a plipastatin mono-producer B. subtilis strain. Therefore, targeting the ornithine metabolic flux might be a promising strategy to further investigate and enhance plipastatin production by B. subtilis plipastatin mono-producer strains.Publication Consumption of antioxidant-rich “Cerrado” cashew pseudofruit affects hepatic gene expression in obese C57BL/6J high fat-fed mice(2022) Egea, Mariana Buranelo; Pierce, Gavin; Park, Si-Hong; Lee, Sang-In; Heger, Fabienne; Shay, NeilThe pseudofruit of A. othonianum Rizzini, “Cerrado” cashew pulp, has been described as rich in flavonoids, phenolic compounds, and vitamin C. The objective of this work was to evaluate the beneficial health effects seen with the addition of “Cerrado” cashew pulp (CP) to an obesogenic high fat diet provided to C57BL/6J male mice. In week 9, the HF-fed group had a significantly higher baseline glucose concentration than the LF- or HF+CP-fed groups. In RNAseq analysis, 4669 of 5520 genes were found to be differentially expressed. Among the genes most upregulated with the ingestion of the CP compared to HF were Ph1da1, SLc6a9, Clec4f, and Ica1 which are related to glucose homeostasis; Mt2 that may be involved steroid biosynthetic process; and Ciart which has a role in the regulation of circadian rhythm. Although “Cerrado” CP intake did not cause changes in the food intake or body weight of fed mice with HF diet, carbohydrate metabolism appeared to be improved based on the observed changes in gene expression.Publication Consumption of yeast-fermented wheat and rye breads increases colitis and mortality in a mouse model of colitis(2022) Zimmermann, Julia; De Fazio, Luigia; Kaden-Volynets, Valentina; Hitzmann, Bernd; Bischoff, Stephan C.Background: Cereals are known to trigger for wheat allergy, celiac disease and non-celiac wheat sensitivity (NCWS). Inflammatory processes and intestinal barrier impairment are suspected to be involved in NCWS, although the molecular triggers are unclear. Aims: We were interested if different bread types influence inflammatory processes and intestinal barrier function in a mouse model of inflammatory bowel disease. Methods: Epithelial caspase-8 gene knockout (Casp8 ΔIEC ) and control (Casp8 fl ) mice were randomized to eight groups, respectively. The groups received different diets for 28 days (gluten-free diet, gluten-rich diet 5 g%, or different types of bread at 50 g%). Breads varied regarding grain, milling and fermentation. All diets were isocaloric. Results: Regardless of the diet, Casp8 ΔIEC mice showed pronounced inflammation in colon compared to ileum, whereas Casp8 fl mice were hardly inflamed. Casp8 fl mice could tolerate all bread types. Especially yeast fermented rye and wheat bread from superfine flour but not pure gluten challenge increased colitis and mortality in Casp8 ΔIEC mice. Hepatic expression of lipopolysaccharide-binding protein and colonic expression of tumor necrosis factor-α genes were inversely related to survival. The bread diets, but not the gluten-rich diet, also decreased colonic tight junction expression to variable degrees, without clear association to survival and inflammation. Conclusions: Bread components, especially those from yeast-fermented breads from wheat and rye, increase colitis and mortality in Casp8 ΔIEC mice highly susceptible to intestinal inflammation, whereas control mice can tolerate all types of bread without inflammation. Yet unidentified bread components other than gluten seem to play the major role.Publication Crop cultivation in the Talayotic settlement of Son Fornés (Mallorca, Spain): agricultural practices on the western Mediterranean islands in the first millennium bce(2024) Stika, Hans-Peter; Neugebauer, Aleta; Rihuete-Herrada, Cristina; Risch, Roberto; Micó, Rafael; Voltas, Jordi; Amengual, Paula; Gelabert, Lara; Lull, VicenteThe Balearic Islands were colonised around the transition from the Chalcolithic to the Bronze Age, not earlier than 2300 cal bce and certainly much later than any central or eastern Mediterranean islands. The number of archaeobotanical records is low and consists mainly of cereals and a few pulses. We present here new results of our long-term study of Son Fornés, an archaeological site on Mallorca which was occupied since the beginning of the Iron Age Talayotic period (~ 850 cal bce ) and until Roman times (123 bce onwards), in the Balearic Islands. In the Talayotic period of Son Fornés Hordeum vulgare var. vulgare (hulled barley) and Triticum aestivum/durum/turgidum (free-threshing wheat) were the main cereals grown and Vicia faba (broad bean) was the main pulse, while Avena sp. (oats) is considered to have been a weed but was nonetheless consumed and was probably in an early phase of being domesticated. For the subsequent post-Talayotic (ca. 550 − 250 bce ), Classic I and Classic II, the Republican Roman occupation period (from 123 bce onwards) the databases are weak, displaying hulled barley as the main crop and broad bean as the main pulse. The archaeobotanical records of Ficus carica (fig), Olea europaea (olive) and Vitis vinifera (grapevine) represent wild or cultivated and domesticated forms. Prunus dulcis (almond) and Pinus pinea (stone pine) were found on Eivissa (Ibiza), pointing to a Phoenician introduction to the islands, while Phoenix dactylifera (date palm) and Castanea sativa (chestnut), found on Menorca, might have been brought in by the Romans. The number of crops being used on the Balearic Islands was limited when compared to sites of similar periods on the European mainland or the central and eastern Mediterranean islands. According to carbon isotope results of Δ 13 C, hulled barley grew under damper conditions than free-threshing wheat. The high δ 15 N values indicated that both crops were well-manured with animal dung during the entire occupation period.Publication Disc mower versus bar mower: Evaluation of the direct effects of two common mowing techniques on the grassland arthropod fauna(2025) von Berg, Lea; Frank, Jonas; Betz, Oliver; Steidle, Johannes L. M.; Böttinger, Stefan; Sann, Manuela1. In Central Europe, species‐rich grasslands are threatened by intensive agriculture with frequent mowing, contributing to the reduction of arthropods such as insects and spiders. However, comprehensive and standardised studies on the direct effects of the two most agriculturally relevant mowing techniques, e.g., double‐blade bar mower versus disc mower, are lacking. 2. In a 2‐year experiment, we have investigated the direct effect of mowing on eight abundant arthropod groups in grassland, covering two seasonal mowing events in both years, using a randomised block design. We compared (a) an unmown control, (b) a double‐blade bar mower and (c) a disc mower. 3. For most of the taxonomic groups studied, a significantly lower number of individuals was found in the experimental plots immediately after mowing, regardless of the mowing technique, compared to an unmown control. This was not the case for Orthoptera and Coleoptera, which did not show a significant reduction in the number of individuals for both mowing techniques (Orthoptera) or only for the double‐blade bar mower (Coleoptera). 4. Between both mowing techniques, no significant differences were found for all taxonomic groups investigated. 5. Synthesis and applications: Our findings suggest that mowing in general has a negative impact on abundant arthropod groups in grassland, regardless of the method used. Tractor‐driven double‐blade bar mowers do not seem to be a truly insect‐friendly alternative to a conventional disc mower. Other factors such as cutting height and mowing regimes should be seriously considered to protect spiders and insects from the negative effects of mowing. In addition, we strongly recommend the maintenance of unmown refugia. Insects and spiders that are spared by mowing can take refuge in these unmown areas to avoid subsequent harvesting and thermally unfavourable conditions that arise on mown areas. Further, unmown refugia are basic habitat structures for a subsequent recolonisation of mown areas once the flora has recovered.Publication Editorial: Microbial biosurfactants: updates on their biosynthesis, production and applications(2024) Hausmann, Rudolf; Déziel, Eric; Soberón-Chávez, GloriaPublication Effect of cutting set variations on structural and functional properties of hamburgers(2024) Berger, Lisa M.; Adam, Felix; Gibis, Monika; Witte, Franziska; Terjung, Nino; Weiss, JochenMeat grinders are composed of a combination of individual functional elements (e.g., screw conveyor, perforated plates, knives). This setup, and in particular the chosen cutting set, influences the characteristics of ground meat and hamburgers produced. In this study, we took a closer look at the effect of cutting set variations and process parameters on structural, functional, and physicochemical properties of beef hamburgers produced. It was found that the specific mechanical energy input during grinding increased when cutting levels, i.e., a set of one hole plate and one knife, were increased, causing more cell disintegration ( r = 0.387, p = 0.02). Surprisingly though, an influence on the functional and quality parameters of the hamburgers could not be found for most parameters tested. The findings indicate that variations in the cutting set affect the process parameters and the stress applied to the meat, but residence times in this zone are too small to cause noticeable effects on the analytical and qualitative properties of hamburgers. As such, there are options for energy and cost optimization of industrial grinding processes without sacrificing quality.Publication Effect of liquefaction temperature and enzymatic treatment on bioethanol production from mixed waste baked products(2025) Almuhammad, Mervat; Kölling, Ralf; Einfalt, Daniel; Almuhammad, Mervat; Yeast Genetics and Fermentation Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 23, 70599, Stuttgart, Germany; Kölling, Ralf; Yeast Genetics and Fermentation Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 23, 70599, Stuttgart, Germany; Einfalt, Daniel; Botanical Garden, Ulm University, Hans-Krebs-Weg, 89081, Ulm, GermanyThis study investigates the effect of different liquefaction temperatures (50–70 °C) and four commercial enzyme formulations on glucose release and subsequent ethanol yield, using mixed waste baked products as a substrate. Among the enzymes tested, Amylase GA 500 proved to be superior in the hydrolysis of starch at lower temperatures (50 °C and 55°C). At higher liquefaction temperatures (65 °C and 70°C) all four enzyme preparations showed comparable activity. The highest glucose concentration (205.7 g/L) and the highest ethanol yield (92 g/L) were achieved with Amylase GA 500 at 65 °C. Its superior performance is attributed to the synergistic activity of α-amylase and glucoamylase, which facilitates efficient starch hydrolysis. Crucially, we discovered that the liquefaction temperature profoundly affects fermentation speed independently of the initial glucose concentration or the enzyme preparation used for starch hydrolysis. This novel mechanistic insight suggests that higher temperature treatment either makes an additional factor crucial for yeast fermentation available or depletes/destroys an inhibitor present in the complex waste bakery product matrix. These findings highlight the critical role of temperature and enzyme formulation in optimizing bioethanol production from bakery waste, supporting the development of more sustainable and efficient waste-to-biofuel processes.Publication Effect of partial condensation (dephlegmation) in fruit brandy distillation equipment on the composition of apple brandies(2025) Yagishita, Manami; Reber, Oliver; Alter, Daniela; Kölling, Ralf; Einfalt, Daniel; Chinnici, FabioFruit brandy equipment commonly uses partial condensation (dephlegmation) to generate reflux in the distillation column. Here, we examined the effect of dephlegmation on the composition of fruit brandies in both lab-scale and large-scale settings. In lab-scale experiments, the dephlegmator led to a pronounced enrichment of ethanol in the distillate due to preferred condensation of water, while the concentration of flavor compounds was differentially affected. Some compounds were enriched in the distillate, some were depleted, and some were unaffected by dephlegmation compared with the control without a dephlegmator. Large-scale fruit brandy equipment relying exclusively on dephlegmation was compared as standard with an enrichment section containing three trays. In the equipment relying on dephlegmation, tail components such as fusel alcohols were less well separated from the middle run, which led to a reduced yield of clean spirit in the middle run. In triangle tests, the spirits from the two devices could be clearly differentiated, but there was no clear preference for one spirit or the other. This study provides for the first time detailed data on the influence of dephlegmators on the behavior of flavor compounds during fruit brandy distillation.Publication Effect of smoldering air volume flow rates and smoking time on quality attributes of Frankfurter-type sausages(2025) Leible, Malte; Herrmann, Kurt; Gibis, Monika; Weiss, Jochen; Leible, Malte; Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599, Stuttgart, Germany; Herrmann, Kurt; Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599, Stuttgart, Germany; Gibis, Monika; Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599, Stuttgart, Germany; Weiss, Jochen; Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599, Stuttgart, GermanyThis study explores the effects of varying smoking conditions on the properties of Frankfurter-type sausages. Using a modified smoldering smoke generator, air volume flow rate and smoking time were varied to assess their impact on color, texture, and sensory characteristics. The results showed significant changes in these characteristics and a wide spectrum in smoke color was produced across the 14 different settings. L* values ranged from 64.32 ± 0.61 to 46.33 ± 0.78, a* values ranged from 11.81 ± 0.29 to 24.18 ± 0.39, b* values ranged from 14.93 ± 0.77 to 41.20 ± 1.25 with an increase in smoking time and air volume flow generally leading to a darker smoking color. Sensory test regarding color showed that the perceived color behaved similarly to the measured color. In these descriptive tests the perceived color ranged from 0.42 ± 0.42 to 9.67 ± 0.43 on a scale from 0 to 10. Smoke odor did not show the strong differences seen in the other results. Here the perceived smoke odor ranged from 4.76 ± 2.00 to 8.64 ± 1.03 on a scale from 0 to 10. Since the study was based on a statistical experimental plan, a predictive model based on a surface plot could be established. These findings provide valuable insights in the qualitative changes in Frankfurter -Type sausages for optimizing smoking parameters in the food industry, potentially enabling precise control over desired sensory and physical properties in smoked meat products.Publication Enzymatically formed fatty acid hydroperoxides determined through GC‐MS analysis of enantiomeric excess of hydroxy fatty acids after reduction and ibuprofen derivatization(2025) Hotz, Lisa; Zartmann, Anne; Noack, Isabelle; Drees, Luca J.; Kuschow, Meret K.; Heinrich, Markus R.; Janssen, Hans‐Gerd; Hammann, SimonUnsaturated fatty acids are susceptible to lipid oxidation through autoxidation, photooxygenation or enzymatical oxidation. A characteristic feature of enzyme‐catalyzed oxidation is the high regio‐ and stereospecificity of the formed fatty acid hydroperoxides. In this study, we present a method to quantify enzymatic lipid oxidation through reducing hydroperoxy fatty acid methyl esters to hydroxy fatty acid methyl esters and derivatizing them with enantiopure (S)‐ibuprofen, allowing the resolution of the enantiomer pairs as diastereomers via achiral GC‐MS. After application to enantiopure reference fatty acids, the approach was applied to autoxidation products of linoleic acid, and the expected racemic mixtures of the 9‐ and 13‐hydroperoxide derived hydroxy fatty acids were detected. On the other hand, when linoleic acid was oxidized using soybean lipoxygenase, clear enantiomeric excess of the (13S) enantiomer could be detected, proving the applicability of this method to detect enzymatic oxidation through enantiomeric excess.Publication Exploring ND-011992, a quinazoline-type inhibitor targeting quinone reductases and quinol oxidases(2023) Kägi, Jan; Sloan, Willough; Schimpf, Johannes; Nasiri, Hamid R.; Lashley, Dana; Friedrich, ThorstenBacterial energy metabolism has become a promising target for next-generation tuberculosis chemotherapy. One strategy to hamper ATP production is to inhibit the respiratory oxidases. The respiratory chain of Mycobacterium tuberculosis comprises a cytochrome bcc:aa3 and a cytochrome bd ubiquinol oxidase that require a combined approach to block their activity. A quinazoline-type compound called ND-011992 has previously been reported to ineffectively inhibit bd oxidases, but to act bactericidal in combination with inhibitors of cytochrome bcc:aa3 oxidase. Due to the structural similarity of ND-011992 to quinazoline-type inhibitors of respiratory complex I, we suspected that this compound is also capable of blocking other respiratory chain complexes. Here, we synthesized ND-011992 and a bromine derivative to study their effect on the respiratory chain complexes of Escherichia coli. And indeed, ND-011992 was found to inhibit respiratory complex I and bo3 oxidase in addition to bd-I and bd-II oxidases. The IC50 values are all in the low micromolar range, with inhibition of complex I providing the lowest value with an IC50 of 0.12 µM. Thus, ND-011992 acts on both, quinone reductases and quinol oxidases and could be very well suited to regulate the activity of the entire respiratory chain.Publication Expression of fibroblast growth factor 23 (FGF23) and αKlotho in two commercial laying hen strains fed with and without dietary mineral P supplements before and after the onset of the laying phase(2025) Meier, Leonie; Wallauch, Nadine; Feger, Martina; Oster, Michael; Sommerfeld, Vera; Schmucker, Sonja; Wimmers, Klaus; Huber, Korinna; Stefanski, Volker; Rodehutscord, Markus; Föller, MichaelMaintenance of phosphate homeostasis is particularly critical in laying hens for bone formation and calcium mobilization. The supplementation of their feed with mineral phosphate is common although recent research questions the usual levels of supplementation. Phosphate homeostasis is classically regulated by active vitamin D (calcitriol) and parathyroid hormone, whereas fibroblast growth factor 23 (FGF23) and its co-receptor αKlotho are novel factors. FGF23 has emerged as an important disease biomarker and αKlotho as an anti-aging factor in mammals, however, little is known about their role in poultry. Here, we studied FGF23 and αKlotho expression in two commercial laying hen strains under conditions of dietary mineral phosphorus renunciation and sufficient phosphorus supply. Fifteen- and 20-week-old Lohmann Brown-Classic (LB) or LSL-Classic (LSL) hens were fed a standard maize-soybean-based diet containing 0 or 1 g/kg additional mineral phosphorus for 4 weeks. The animals were sacrificed, and gene expression studied in different organs by quantitative real-time PCR and protein expression by western blotting. Statistical correlation with further parameters of mineral metabolism was analyzed by Pearson’s correlation coefficient or Spearman’s Rho. As a result, FGF23 bone expression was significantly lower and hepatic FGF23 expression higher in 24-week-old than in 19-week-old hens. Bone, hepatic, and renal αKlotho expression was significantly higher in older than younger animals. Compared to LB hens, LSL hens exhibited higher hepatic αKlotho irrespective of diet and age. Dietary phosphorus content did not significantly affect FGF23 and αKlotho expression. Bone FGF23 expression was positively and hepatic FGF23 negatively associated with plasma phosphate concentration whereas bone FGF23 expression was negatively and hepatic FGF23 positively associated with plasma calcitriol concentration. To conclude, we uncovered a strong impact of age and strain on FGF23 and αKlotho expression in two high performance laying hen strains, effects possibly associated with initiation of the egg-laying phase. Moreover, the regulation of hepatic FGF23 expression differed from the regulation of bone FGF23 expression. Further studies are needed to elucidate the physiological relevance.
- «
- 1 (current)
- 2
- 3
- »
