Core Facility Hohenheim
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/16626
Browse
Browsing Core Facility Hohenheim by Sustainable Development Goals "9"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Publication Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis(2020) Vahidinasab, Maliheh; Lilge, Lars; Reinfurt, Aline; Pfannstiel, Jens; Henkel, Marius; Morabbi Heravi, Kambiz; Hausmann, RudolfBackground: Plipastatin is a potent Bacillus antimicrobial lipopeptide with the prospect to replace conventional antifungal chemicals for controlling plant pathogens. However, the application of this lipopeptide has so far been investigated in a few cases, principally because of the yield in low concentration and unknown regulation of biosynthesis pathways. B. subtilis synthesizes plipastatin by a non-ribosomal peptide synthetase encoded by the ppsABCDE operon. In this study, B. subtilis 3NA (a non-sporulation strain) was engineered to gain more insights about plipastatin mono-production. Results: The 4-phosphopantetheinyl transferase Sfp posttranslationally converts non-ribosomal peptide synthetases from inactive apoforms into their active holoforms. In case of 3NA strain, sfp gene is inactive. Accordingly, the first step was an integration of a repaired sfp version in 3NA to construct strain BMV9. Subsequently, plipastatin production was doubled after integration of a fully expressed degQ version from B. subtilis DSM10T strain (strain BMV10), ensuring stimulation of DegU-P regulatory pathway that positively controls the ppsABSDE operon. Moreover, markerless substitution of the comparably weak native plipastatin promoter (Ppps) against the strong constitutive promoter Pveg led to approximately fivefold enhancement of plipastatin production in BMV11 compared to BMV9. Intriguingly, combination of both repaired degQ expression and promoter exchange (Ppps::Pveg) did not increase the plipastatin yield. Afterwards, deletion of surfactin (srfAA-AD) operon by the retaining the regulatory comS which is located within srfAB and is involved in natural competence development, resulted in the loss of plipastatin production in BMV9 and significantly decreased the plipastatin production of BMV11. We also observed that supplementation of ornithine as a precursor for plipastatin formation caused higher production of plipastatin in mono-producer strains, albeit with a modified pattern of plipastatin composition. Conclusions: This study provides evidence that degQ stimulates the native plipastatin production. Moreover, a full plipastatin production requires surfactin synthetase or some of its components. Furthermore, as another conclusion of this study, results point towards ornithine provision being an indispensable constituent for a plipastatin mono-producer B. subtilis strain. Therefore, targeting the ornithine metabolic flux might be a promising strategy to further investigate and enhance plipastatin production by B. subtilis plipastatin mono-producer strains.Publication Fed-batch bioreactor cultivation of Bacillus subtilis using vegetable juice as an alternative carbon source for lipopeptides production: a shift towards a circular bioeconomy(2024) Gugel, Irene; Vahidinasab, Maliheh; Benatto Perino, Elvio Henrique; Hiller, Eric; Marchetti, Filippo; Costa, Stefania; Pfannstiel, Jens; Konnerth, Philipp; Vertuani, Silvia; Manfredini, Stefano; Hausmann, Rudolf; Gudiña, EduardoIn a scenario of increasing alarm about food waste due to rapid urbanization, population growth and lifestyle changes, this study aims to explore the valorization of waste from the retail sector as potential substrates for the biotechnological production of biosurfactants. With a perspective of increasingly contributing to the realization of the circular bioeconomy, a vegetable juice, derived from unsold fruits and vegetables, as a carbon source was used to produce lipopeptides such as surfactin and fengycin. The results from the shake flask cultivations revealed that different concentrations of vegetable juice could effectively serve as carbon sources and that the fed-batch bioreactor cultivation strategy allowed the yields of lipopeptides to be significantly increased. In particular, the product/substrate yield of 0.09 g/g for surfactin and 0.85 mg/g for fengycin was obtained with maximum concentrations of 2.77 g/L and 27.53 mg/L after 16 h, respectively. To conclude, this study provides the successful fed-batch cultivation of B. subtilis using waste product as the carbon source to produce secondary metabolites. Therefore, the consumption of agricultural product wastes might be a promising source for producing valuable metabolites which have promising application potential to be used in several fields of biological controls of fungal diseases.Publication Glucoselipid biosurfactant biosynthesis operon of Rouxiella badensis DSM 100043T: screening, identification, and heterologous expression in Escherichia coli(2025) Harahap, Andre Fahriz Perdana; Treinen, Chantal; Van Zyl, Leonardo Joaquim; Williams, Wesley Trevor; Conrad, Jürgen; Pfannstiel, Jens; Klaiber, Iris; Grether, Jakob; Hiller, Eric; Vahidinasab, Maliheh; Perino, Elvio Henrique Benatto; Lilge, Lars; Burger, Anita; Trindade, Marla; Hausmann, Rudolf; Seo, Myung-JiRouxiella badensis DSM 100043T had been previously proven to produce a novel glucoselipid biosurfactant which has a very low critical micelle concentration (CMC) as well as very good stability against a wide range of pH, temperature, and salinity. In this study, we performed a function-based library screening from a R. badensis DSM 100043T genome library to identify responsible genes for biosynthesis of this glucoselipid. The identified open reading frames (ORFs) were cloned into several constructs in Escherichia coli for gene permutation analysis and the individual products were analyzed using high-performance thin-layer chromatography (HPTLC). Products of interest from positive expression strains were purified and analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) and nuclear magnetic resonance (NMR) for further structure elucidation. Function-based screening of 5400 clones led to the identification of an operon containing three ORFs encoding acetyltransferase GlcA (ORF1), acyltransferase GlcB (ORF2), and phosphatase/HAD GlcC (ORF3). E. coli pCAT2, with all three ORFs, resulted in the production of identical R. badensis DSM 100043T glucosedilipid with Glu-C10:0-C12:1 as the main congener. ORF2-deletion strain E. coli pAFP1 primarily produced glucosemonolipids, with Glu-C10:0,3OH and Glu-C12:0 as the major congeners, predominantly esterified at the C-2 position of the glucose moiety. Furthermore, fed-batch bioreactor cultivation of E. coli pCAT2 using glucose as the carbon source yielded a maximum glucosedilipid titer of 2.34 g/L after 25 h of fermentation, which is 55-fold higher than that produced by batch cultivation of R. badensis DSM 100043T in the previous study.Publication Modeling the time course of ComX: towards molecular process control for Bacillus wild-type cultivations(2021) Treinen, Chantal; Magosch, Olivia; Hoffmann, Mareen; Klausmann, Peter; Würtz, Berit; Pfannstiel, Jens; Morabbi Heravi, Kambiz; Lilge, Lars; Hausmann, Rudolf; Henkel, MariusWild-type cultivations are of invaluable relevance for industrial biotechnology when it comes to the agricultural or food sector. Here, genetic engineering is hardly applicable due to legal barriers and consumer’s demand for GMO-free products. An important pillar for wild-type cultivations displays the genus Bacillus. One of the challenges for Bacillus cultivations is the global ComX-dependent quorum sensing system. Here, molecular process control can serve as a tool to optimize the production process without genetic engineering. To realize this approach, quantitative knowledge of the mechanism is essential, which, however, is often available only to a limited extent. The presented work provides a case study based on the production of cyclic lipopeptide surfactin, whose expression is in dependence of ComX, using natural producer B. subtilis DSM 10 T. First, a surfactin reference process with 40 g/L of glucose was performed as batch fermentation in a pilot scale bioreactor system to gain novel insights into kinetic behavior of ComX in relation to surfactin production. Interestingly, the specific surfactin productivity did not increase linearly with ComX activity. The data were then used to derive a mathematic model for the time course of ComX in dependence of existing biomass, biomass growth as well as a putative ComX-specific protease. The newly adapted model was validated and transferred to other batch fermentations, employing 20 and 60 g/L glucose. The applied approach can serve as a model system for molecular process control strategies, which can thus be extended to other quorum sensing dependent wild-type cultivations.Publication Multi-omics characterization of the monkeypox virus infection(2024) Huang, Yiqi; Bergant, Valter; Grass, Vincent; Emslander, Quirin; Hamad, M. Sabri; Hubel, Philipp; Mergner, Julia; Piras, Antonio; Krey, Karsten; Henrici, Alexander; Öllinger, Rupert; Tesfamariam, Yonas M.; Dalla Rosa, Ilaria; Bunse, Till; Sutter, Gerd; Ebert, Gregor; Schmidt, Florian I.; Way, Michael; Rad, Roland; Bowie, Andrew G.; Protzer, Ulrike; Pichlmair, AndreasMultiple omics analyzes of Vaccinia virus (VACV) infection have defined molecular characteristics of poxvirus biology. However, little is known about the monkeypox (mpox) virus (MPXV) in humans, which has a different disease manifestation despite its high sequence similarity to VACV. Here, we perform an in-depth multi-omics analysis of the transcriptome, proteome, and phosphoproteome signatures of MPXV-infected primary human fibroblasts to gain insights into the virus-host interplay. In addition to expected perturbations of immune-related pathways, we uncover regulation of the HIPPO and TGF-β pathways. We identify dynamic phosphorylation of both host and viral proteins, which suggests that MAPKs are key regulators of differential phosphorylation in MPXV-infected cells. Among the viral proteins, we find dynamic phosphorylation of H5 that influenced the binding of H5 to dsDNA. Our extensive dataset highlights signaling events and hotspots perturbed by MPXV, extending the current knowledge on poxviruses. We use integrated pathway analysis and drug-target prediction approaches to identify potential drug targets that affect virus growth. Functionally, we exemplify the utility of this approach by identifying inhibitors of MTOR, CHUK/IKBKB, and splicing factor kinases with potent antiviral efficacy against MPXV and VACV.Publication A novel, robust peptidyl-lys metalloendopeptidase from Trametes coccinea recombinantly expressed in Komagataella phaffii(2024) Ahmed, Uzair; Stadelmann, Tobias; Heid, Daniel; Würtz, Berit; Pfannstiel, Jens; Ochsenreither, Katrin; Eisele, ThomasA novel peptidyl-lys metalloendopeptidase ( Tc -LysN) from Tramates coccinea was recombinantly expressed in Komagataella phaffii using the native pro-protein sequence. The peptidase was secreted into the culture broth as zymogen (~38 kDa) and mature enzyme (~19.8 kDa) simultaneously. The mature Tc -LysN was purified to homogeneity with a single step anion-exchange chromatography at pH 7.2. N-terminal sequencing using TMTpro Zero and mass spectrometry of the mature Tc- LysN indicated that the pro-peptide was cleaved between the amino acid positions 184 and 185 at the Kex2 cleavage site present in the native pro-protein sequence. The pH optimum of Tc -LysN was determined to be 5.0 while it maintained ≥60% activity between pH values 4.5—7.5 and ≥30% activity between pH values 8.5—10.0, indicating its broad applicability. The temperature maximum of Tc -LysN was determined to be 60 °C. After 18 h of incubation at 80 °C, Tc -LysN still retained ~20% activity. Organic solvents such as methanol and acetonitrile, at concentrations as high as 40% (v/v), were found to enhance Tc -LysN’s activity up to ~100% and ~50%, respectively. Tc -LysN’s thermostability, ability to withstand up to 8 M urea, tolerance to high concentrations of organic solvents, and an acidic pH optimum make it a viable candidate to be employed in proteomics workflows in which alkaline conditions might pose a challenge. The nano-LC-MS/MS analysis revealed bovine serum albumin (BSA)’s sequence coverage of 84% using Tc -LysN which was comparable to the sequence coverage of 90% by trypsin peptides. Key points • A novel LysN from Trametes coccinea (Tc-LysN) was expressed in Komagataella phaffii and purified to homogeneity • Tc-LysN is thermostable, applicable over a broad pH range, and tolerates high concentrations of denaturants • Tc-LysN was successfully applied for protein digestion and mass spectrometry fingerprintingPublication Predictor preselection for mixed‐frequency dynamic factor models: a simulation study with an empirical application to GDP nowcasting(2025) Franjic, Domenic; Schweikert, KarstenWe investigate the performance of dynamic factor model nowcasting with preselected predictors in a mixed‐frequency setting. The predictors are selected via the elastic net as it is common in the targeted predictor literature. A simulation study and an application to empirical data are used to evaluate different strategies for variable selection, the influence of tuning parameters, and to determine the optimal way to handle mixed‐frequency data. We propose a novel cross‐validation approach that connects the preselection and nowcasting step. In general, we find that preselecting provides more accurate nowcasts compared with the benchmark dynamic factor model using all variables. Our newly proposed cross‐validation method outperforms the other specifications in most cases.Publication Structure elucidation and characterization of novel glycolipid biosurfactant produced by Rouxiella badensis DSM 100043T(2025) Harahap, Andre Fahriz Perdana; Conrad, Jürgen; Wolf, Mario; Pfannstiel, Jens; Klaiber, Iris; Grether, Jakob; Hiller, Eric; Vahidinasab, Maliheh; Salminen, Hanna; Treinen, Chantal; Perino, Elvio Henrique Benatto; Hausmann, Rudolf; Serianni, Anthony S.Microbial biosurfactants have become increasingly attractive as promising ingredients for environmentally friendly products. The reasons for this are their generally good performance and biodegradability, low toxicity, production from renewable raw materials, and benefits for the environment perceived by consumers. In this study, we investigated the chemical structure and properties of a novel glycolipid from a new biosurfactant-producing strain, Rouxiella badensis DSM 100043 T . Bioreactor cultivation was performed at 30 °C and pH 7.0 for 28 h using 15 g/L glycerol as a carbon source. The glycolipid was successfully purified from the ethyl acetate extract of the supernatant using medium pressure liquid chromatography (MPLC). The structure of the glycolipid was determined by one- and two-dimensional ( 1 H and 13 C) nuclear magnetic resonance (NMR) and confirmed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI/MS). NMR analysis revealed the hydrophilic moiety as a glucose molecule and the hydrophobic moieties as 3-hydroxy-5-dodecenoic acid and 3-hydroxydecanoic acid, which are linked with the glucose by ester bonds at the C2 and C3 positions. Surface tension measurement with tensiometry indicated that the glucose–lipid could reduce the surface tension of water from 72.05 mN/m to 24.59 mN/m at 25 °C with a very low critical micelle concentration (CMC) of 5.69 mg/L. Moreover, the glucose–lipid demonstrated very good stability in maintaining emulsification activity at pH 2–8, a temperature of up to 100 °C, and a NaCl concentration of up to 15%. These results show that R. badensis DSM 100043 T produced a novel glycolipid biosurfactant with excellent surface-active properties, making it promising for further research or industrial applications.
