Core Facility Hohenheim
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/16626
Browse
Browsing Core Facility Hohenheim by Sustainable Development Goals "9"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis(2020) Vahidinasab, Maliheh; Lilge, Lars; Reinfurt, Aline; Pfannstiel, Jens; Henkel, Marius; Morabbi Heravi, Kambiz; Hausmann, RudolfBackground: Plipastatin is a potent Bacillus antimicrobial lipopeptide with the prospect to replace conventional antifungal chemicals for controlling plant pathogens. However, the application of this lipopeptide has so far been investigated in a few cases, principally because of the yield in low concentration and unknown regulation of biosynthesis pathways. B. subtilis synthesizes plipastatin by a non-ribosomal peptide synthetase encoded by the ppsABCDE operon. In this study, B. subtilis 3NA (a non-sporulation strain) was engineered to gain more insights about plipastatin mono-production. Results: The 4-phosphopantetheinyl transferase Sfp posttranslationally converts non-ribosomal peptide synthetases from inactive apoforms into their active holoforms. In case of 3NA strain, sfp gene is inactive. Accordingly, the first step was an integration of a repaired sfp version in 3NA to construct strain BMV9. Subsequently, plipastatin production was doubled after integration of a fully expressed degQ version from B. subtilis DSM10T strain (strain BMV10), ensuring stimulation of DegU-P regulatory pathway that positively controls the ppsABSDE operon. Moreover, markerless substitution of the comparably weak native plipastatin promoter (Ppps) against the strong constitutive promoter Pveg led to approximately fivefold enhancement of plipastatin production in BMV11 compared to BMV9. Intriguingly, combination of both repaired degQ expression and promoter exchange (Ppps::Pveg) did not increase the plipastatin yield. Afterwards, deletion of surfactin (srfAA-AD) operon by the retaining the regulatory comS which is located within srfAB and is involved in natural competence development, resulted in the loss of plipastatin production in BMV9 and significantly decreased the plipastatin production of BMV11. We also observed that supplementation of ornithine as a precursor for plipastatin formation caused higher production of plipastatin in mono-producer strains, albeit with a modified pattern of plipastatin composition. Conclusions: This study provides evidence that degQ stimulates the native plipastatin production. Moreover, a full plipastatin production requires surfactin synthetase or some of its components. Furthermore, as another conclusion of this study, results point towards ornithine provision being an indispensable constituent for a plipastatin mono-producer B. subtilis strain. Therefore, targeting the ornithine metabolic flux might be a promising strategy to further investigate and enhance plipastatin production by B. subtilis plipastatin mono-producer strains.Publication Fed-batch bioreactor cultivation of Bacillus subtilis using vegetable juice as an alternative carbon source for lipopeptides production: a shift towards a circular bioeconomy(2024) Gugel, Irene; Vahidinasab, Maliheh; Benatto Perino, Elvio Henrique; Hiller, Eric; Marchetti, Filippo; Costa, Stefania; Pfannstiel, Jens; Konnerth, Philipp; Vertuani, Silvia; Manfredini, Stefano; Hausmann, Rudolf; Gugel, Irene; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Vahidinasab, Maliheh; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Benatto Perino, Elvio Henrique; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Hiller, Eric; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Marchetti, Filippo; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Costa, Stefania; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Pfannstiel, Jens; Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, Ottlie-Zeller-Weg 2, 70599 Stuttgart, Germany; Konnerth, Philipp; Department of Conversion Technology of Biobased Resources, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart, Germany;; Vertuani, Silvia; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Manfredini, Stefano; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Hausmann, Rudolf; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Gudiña, EduardoIn a scenario of increasing alarm about food waste due to rapid urbanization, population growth and lifestyle changes, this study aims to explore the valorization of waste from the retail sector as potential substrates for the biotechnological production of biosurfactants. With a perspective of increasingly contributing to the realization of the circular bioeconomy, a vegetable juice, derived from unsold fruits and vegetables, as a carbon source was used to produce lipopeptides such as surfactin and fengycin. The results from the shake flask cultivations revealed that different concentrations of vegetable juice could effectively serve as carbon sources and that the fed-batch bioreactor cultivation strategy allowed the yields of lipopeptides to be significantly increased. In particular, the product/substrate yield of 0.09 g/g for surfactin and 0.85 mg/g for fengycin was obtained with maximum concentrations of 2.77 g/L and 27.53 mg/L after 16 h, respectively. To conclude, this study provides the successful fed-batch cultivation of B. subtilis using waste product as the carbon source to produce secondary metabolites. Therefore, the consumption of agricultural product wastes might be a promising source for producing valuable metabolites which have promising application potential to be used in several fields of biological controls of fungal diseases.Publication Predictor preselection for mixed‐frequency dynamic factor models: a simulation study with an empirical application to GDP nowcasting(2025) Franjic, Domenic; Schweikert, Karsten; Franjic, Domenic; Core Facility Hohenheim and Institute of Economics, University of Hohenheim, Stuttgart, Germany; Schweikert, Karsten; Core Facility Hohenheim and Institute of Economics, University of Hohenheim, Stuttgart, GermanyWe investigate the performance of dynamic factor model nowcasting with preselected predictors in a mixed‐frequency setting. The predictors are selected via the elastic net as it is common in the targeted predictor literature. A simulation study and an application to empirical data are used to evaluate different strategies for variable selection, the influence of tuning parameters, and to determine the optimal way to handle mixed‐frequency data. We propose a novel cross‐validation approach that connects the preselection and nowcasting step. In general, we find that preselecting provides more accurate nowcasts compared with the benchmark dynamic factor model using all variables. Our newly proposed cross‐validation method outperforms the other specifications in most cases.Publication Structure elucidation and characterization of novel glycolipid biosurfactant produced by Rouxiella badensis DSM 100043T(2025) Harahap, Andre Fahriz Perdana; Conrad, Jürgen; Wolf, Mario; Pfannstiel, Jens; Klaiber, Iris; Grether, Jakob; Hiller, Eric; Vahidinasab, Maliheh; Salminen, Hanna; Treinen, Chantal; Perino, Elvio Henrique Benatto; Hausmann, Rudolf; Harahap, Andre Fahriz Perdana; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Conrad, Jürgen; Department of Organic Chemistry (130b), Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (J.C.); (M.W.); Wolf, Mario; Department of Organic Chemistry (130b), Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (J.C.); (M.W.); Pfannstiel, Jens; Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599 Stuttgart, Germany; (J.P.); (I.K.); Klaiber, Iris; Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599 Stuttgart, Germany; (J.P.); (I.K.); Grether, Jakob; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Hiller, Eric; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Vahidinasab, Maliheh; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Salminen, Hanna; Department of Food Material Science (150g), Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 21/25, 70599 Stuttgart, Germany;; Treinen, Chantal; Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;; Perino, Elvio Henrique Benatto; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Hausmann, Rudolf; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Serianni, Anthony S.Microbial biosurfactants have become increasingly attractive as promising ingredients for environmentally friendly products. The reasons for this are their generally good performance and biodegradability, low toxicity, production from renewable raw materials, and benefits for the environment perceived by consumers. In this study, we investigated the chemical structure and properties of a novel glycolipid from a new biosurfactant-producing strain, Rouxiella badensis DSM 100043 T . Bioreactor cultivation was performed at 30 °C and pH 7.0 for 28 h using 15 g/L glycerol as a carbon source. The glycolipid was successfully purified from the ethyl acetate extract of the supernatant using medium pressure liquid chromatography (MPLC). The structure of the glycolipid was determined by one- and two-dimensional ( 1 H and 13 C) nuclear magnetic resonance (NMR) and confirmed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI/MS). NMR analysis revealed the hydrophilic moiety as a glucose molecule and the hydrophobic moieties as 3-hydroxy-5-dodecenoic acid and 3-hydroxydecanoic acid, which are linked with the glucose by ester bonds at the C2 and C3 positions. Surface tension measurement with tensiometry indicated that the glucose–lipid could reduce the surface tension of water from 72.05 mN/m to 24.59 mN/m at 25 °C with a very low critical micelle concentration (CMC) of 5.69 mg/L. Moreover, the glucose–lipid demonstrated very good stability in maintaining emulsification activity at pH 2–8, a temperature of up to 100 °C, and a NaCl concentration of up to 15%. These results show that R. badensis DSM 100043 T produced a novel glycolipid biosurfactant with excellent surface-active properties, making it promising for further research or industrial applications.