Sondersammlungen
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/7011
Browse
Browsing Sondersammlungen by Sustainable Development Goals "3"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Publication Bioaccessibility and anti-inflammatory activity in Caco-2 cells of phytochemicals from industrial by-products of coffee (Coffea arabica L.)(2025) Jiménez-Gutiérrez, Milena; Zielinski, Christian; Esquivel, Patricia; Frank, Jan; Irías-Mata, Andrea; Jiménez-Aspee, FelipeCoffee by-products are rich in nutrients and bioactive compounds in free soluble form and bound to cell wall components. These compounds undergo chemical changes during gastrointestinal digestion, affecting their bioaccessibility and bioactivity. This study is the first to investigate coffee by-products from industrial wet processing to evaluate the impact of simulated gastrointestinal digestion on their phytochemical composition and subsequent anti-inflammatory activity in Caco-2 cells. Digestion significantly reduced the stability and solubility of main compounds; however, digested bioaccessible by-products still exhibited anti-inflammatory properties, reducing IL-6, IL-8, and TNF-α levels. Correlation analysis identified rutin, quercetin-3-glycoside, caffeine and 5-caffeoylquinic acid as strongly linked to cytokine suppression, suggesting key roles and possible synergies. These results highlight the potential of coffee by-products as functional ingredients targeting intestinal inflammation. Future work should confirm in vivo efficacy, optimize extraction at scale, and address regulatory requirements to support industrial application and promote circular economy benefits.Publication A diamine oxidase from Glutamicibacter halophytocola for the degradation of histamine and tyramine in foods(2025) Kettner, Lucas; Freund, Alexander; Bechtel, Anna; Costa-Catala, Judit; Fischer, Lutz; Kettner, Lucas; Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599 Stuttgart, Germany; Freund, Alexander; Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599 Stuttgart, Germany; Bechtel, Anna; Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599 Stuttgart, Germany; Costa-Catala, Judit; Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Universitat de Barcelona, Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; Fischer, Lutz; Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599 Stuttgart, GermanyA novel diamine oxidase (DAO) was discovered in the bacterium Glutamicibacter halophytocola (DAO-GH). The gene of DAO-GH was integrated into the genome of the yeast Komagataella phaffii and recombinantly produced under control of the methanol-inducible AOX1 promoter in a bioreactor cultivation. A high DAO activity of 70.2 ± 5.2 µkat/Lculture (5.25 ± 0.22 µkat/gprotein) was yielded after 90 h of cultivation. The DAO-GH was partially purified by the polyethyleneimine precipitation of nucleic acids, fractionated ammonium sulfate precipitation and hydrophobic interaction chromatography, resulting in a specific DAO activity of 19.7 µkat/gProtein. The DAO-GH was then biochemically investigated regarding its potential for histamine and tyramine degradation in fermented foods and the human small intestine. Interestingly, the DAO-GH showed activity even at a low pH of 5 and low temperature of 6 °C. Both histamine and tyramine were effectively degraded and DAO-GH showed especially very high affinity towards tyramine (Km of 0.009 mM). The DAO-GH was shown to be capable of degrading around 20% of the initially applied histamine in tuna paste (pH 5.6) at 5 °C within 24 h and completely degraded the histamine in a simulated intestinal fluid within 1.5 h in bioconversion experiments. The DAO-GH was spray-dried for the production of a storable enzyme preparation. Only around 17% of activity were lost in this process and the DAO-GH remained stable at room temperature for at least 3 months. The discovery of this DAO with its very advantageous biochemical properties allows the preparation of histamine-reduced or -free fermented foods by a simple enzymatic treatment or the treatment of histamine intolerance symptoms as a dietary supplement or medicine.Publication EvaMol : A python tool for evaluating molecules in hit-to-lead optimization(2025) Herzog, Anna-Maria; Steuber, Julia; Fritz, GünterThis Python script was developed as a tool in structure-based drug discovery processes, such as fragment-to-lead-optimization, where a large number of variants of an initially identified hit molecule have to be evaluated and ranked in silico. The tool facilitates the identification and selection of follow-up drug candidates with improved predicted pharmacokinetic and binding properties. These candidates can derive from different procedures like similarity search or systematic chemical modifications. The initial hit data are provided either as coordinates of the protein-molecule complex obtained experimentally or by in silico methods such as docking making the script a versatile tool adaptable to variable workflows.Publication From import to establishment? Experimental evidence for seasonal outdoor survival of two Rhipicephalus species in Germany(2025) Fachet-Lehmann, Katrin; Lindau, Alexander; Mackenstedt, UteThe brown dog tick (Rhipicephalus sanguineus s.l.), though not endemic in Germany, is regularly introduced via travelers with dogs and imported rescue dogs. Due to its relevance in veterinary and human medicine, its potential to establish in Germany’s climate is of interest. Although previous studies confirm indoor survival and reproduction of R. sanguineus s.s. in Germany, climate change and milder winters may also allow outdoor survival. This study assessed the survival of R. sanguineus s.s. and R. innaei from February 2023 to May 2024 using laboratory-bred ticks placed at indoor and outdoor sites. Tick survival (adults, nymphs, larvae) was monitored weekly, along with temperature and humidity. Reproductive success was evaluated via oviposition and larval hatching. R. sanguineus s.s. adults survived up to 44 weeks, nymphs up to 20 weeks, and larvae up to 5 weeks. R. innaei showed shorter survival (37, 10, and 4 weeks, respectively). Successful oviposition and larval hatching occurred outdoors between May´23 and September´23 for both species. However, winter survival was not observed; all ticks died following sub-zero temperatures in December´23. Despite the inability to overwinter outdoors, both species can survive for extended periods in spring and summer and may enter homes via dogs, where conditions favor year-round survival. Their ability to transition indoors via dogs, where conditions favor year-round survival, suggests a potential for establishment in Germany through combined indoor and seasonal outdoor persistence.Publication The non-nutritive sweetener rebaudioside a enhances phage infectivity(2025) Marongiu, Luigi; Brzozowska, Ewa; Brykała, Jan; Burkard, Markus; Schmidt, Herbert; Szermer-Olearnik, Bożena; Venturelli, SaschaNon-nutritive sweeteners (NNS) are widely employed in foodstuffs. However, it has become increasingly evident that their consumption is associated with bacterial dysbiosis, which, in turn, is linked to several health conditions, including a higher risk of type 2 diabetes and cancer. Among the NNS, stevia, whose main component is rebaudioside A (rebA), is gaining popularity in the organic food market segment. While the effect of NNS on bacteria has been established, the impact of these sweeteners on bacterial viruses (phages) has been neglected, even though phages are crucial elements in maintaining microbial eubiosis. The present study sought to provide a proof-of-concept of the impact of NNS on phage infectivity by assessing the binding of rebA to phage proteins involved in the infection process of enteropathogenic bacteria, namely the fiber protein gp17 of Yersinia enterocolitica phage φYeO3-12 and the tubular baseplate protein gp31 of Klebsiella pneumoniae phage 32. We employed docking analysis and a panel of in vitro confirmatory tests (microscale thermophoresis, RedStarch ™ depolymerization, adsorption, and lysis rates). Docking analysis indicated that NNS can bind to both fiber and baseplate proteins. Confirmatory assays demonstrated that rebA can bind gp31 and that such binding increased the protein’s enzymatic activity. Moreover, the binding of rebA to gp17 resulted in a decrease in the adsorption rate of the recombinant protein to its host but increased the Yersinia bacteriolysis caused by the whole phage compared to unexposed controls. These results support the hypothesis that NNS can impair phage infectivity, albeit the resulting effect on the microbiome remains to be elucidated.Publication Occurrence and quantification of porcine hemotrophic mycoplasmas in blood-sucking Stomoxys calcitrans(2025) Arendt, Mareike; Hoelzle, Katharina; Stadler, Julia; Ritzmann, Mathias; Ade, Julia; Hoelzle, Ludwig E.; Schwarz, Lukas; Rossi, FrancaHemotrophic mycoplasmas (HMs) are cell wall-less, small and uncultivable pathogens, which can cause infections in pigs with no to severe clinical signs and can contribute to significant economic losses in the pig industry. In addition to the known mechanical transmission routes of HMs (e.g., via blood-contaminated instruments or lesions from ranking fights), transmission to pigs by arthropod vectors such as Stomoxys calcitrans is being discussed. To date, there is scant available data concerning the transmission of HMs by stable flies. The objective of this study is to gain more data concerning the occurrence of HMs in Stomoxys calcitrans . Therefore, quantitative real-time PCR was conducted on different stable fly samples (surface washings and whole flies). We found Mycoplasma ( M. ) suis in 5.2% of crushed flies and 4.2% of fly wash solutions, and M. parvum was detected in 5.2% of flies and 9.4% of fly wash solutions. ‘ Candidatus ( Ca .) M. haemosuis’ was not detected in any sample. The mean bacterial loads were 2.0 × 10 2 M. suis /fly, 9.3 × 10 2 M. suis /fly wash solution and, for M. parvum , 2.4 × 10 3 M. parvum /fly and 2.1 × 10 3 M. parvum /fly wash solution. This molecular occurrence of porcine HMs in blood-sucking flies and reasonable bacterial loads in the two- to three-digit range demonstrate that these flies serve as mechanical vectors in stables and are, therefore, of epidemiological importance.Publication Towards sustainable biointelligent food design: structuring potential of plant-based materials exemplified using apricot seed oil oleogels and bigels through 3D food printing(2025) Reinmuth, Evelyn; Fahmy, Ahmed Raouf; Ribette, Olivia; Jekle, Mario; Reinmuth, Evelyn; Bioeconomy Office Hohenheim, University of Hohenheim, Stuttgart, Germany; Fahmy, Ahmed Raouf; Department of Plant-Based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany; Ribette, Olivia; Department of Plant-Based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany; Jekle, Mario; Department of Plant-Based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, GermanyBackground/Introduction: Biointelligence in the approach of food additive manufacturing represents a significant advancement, enabling the reverse engineering and design of foods. Legislation restricting trans-fats has accelerated research into alternatives, but ingredients like saturated and trans fats play key roles in food quality and functionality. Oleogels are a promising replacement. Food additive manufacturing introduces a biointelligent approach, combining biological and technical components with information technology to optimize food design. This study investigates 3D printing of oleogel and bigel systems using apricot seed oil, aiming to assess their significance, applicability, and printability as sustainable alternatives to trans fats for innovative, resource-efficient food production. Methods: Apricot seed oil, rich in antioxidants and polyunsaturated fatty acids, was processed into plant-based oleogels and bigels. The material systems were incorporated into 3D printed food structures. Material characterization and techno-functional analysis were conducted to evaluate the suitability of apricot seed oil for structuring 3D printed foods and controlling food texture. Results: Adjusting the type and concentration of oil-gelator mixtures enabled tailored texture and lipid distribution to fit consumer preferences. Sustainability impacts were assessed at intermediate processing steps, demonstrating the value of holistic evaluations beyond technical factors. Discussion: Biointelligent 3D printing offers a platform to optimize sensory and sustainability qualities in food design. The integration of apricot seed oil into novel food matrices enables versatile nutritional product development, supporting researchers and industry stakeholders in advancing consumer-centric, sustainable production and consumption practices.
