Sondersammlungen
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/7011
Browse
Browsing Sondersammlungen by Sustainable Development Goals "3"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication The non-nutritive sweetener rebaudioside a enhances phage infectivity(2025) Marongiu, Luigi; Brzozowska, Ewa; Brykała, Jan; Burkard, Markus; Schmidt, Herbert; Szermer-Olearnik, Bożena; Venturelli, SaschaNon-nutritive sweeteners (NNS) are widely employed in foodstuffs. However, it has become increasingly evident that their consumption is associated with bacterial dysbiosis, which, in turn, is linked to several health conditions, including a higher risk of type 2 diabetes and cancer. Among the NNS, stevia, whose main component is rebaudioside A (rebA), is gaining popularity in the organic food market segment. While the effect of NNS on bacteria has been established, the impact of these sweeteners on bacterial viruses (phages) has been neglected, even though phages are crucial elements in maintaining microbial eubiosis. The present study sought to provide a proof-of-concept of the impact of NNS on phage infectivity by assessing the binding of rebA to phage proteins involved in the infection process of enteropathogenic bacteria, namely the fiber protein gp17 of Yersinia enterocolitica phage φYeO3-12 and the tubular baseplate protein gp31 of Klebsiella pneumoniae phage 32. We employed docking analysis and a panel of in vitro confirmatory tests (microscale thermophoresis, RedStarch ™ depolymerization, adsorption, and lysis rates). Docking analysis indicated that NNS can bind to both fiber and baseplate proteins. Confirmatory assays demonstrated that rebA can bind gp31 and that such binding increased the protein’s enzymatic activity. Moreover, the binding of rebA to gp17 resulted in a decrease in the adsorption rate of the recombinant protein to its host but increased the Yersinia bacteriolysis caused by the whole phage compared to unexposed controls. These results support the hypothesis that NNS can impair phage infectivity, albeit the resulting effect on the microbiome remains to be elucidated.Publication Occurrence and quantification of porcine hemotrophic mycoplasmas in blood-sucking Stomoxys calcitrans(2025) Arendt, Mareike; Hoelzle, Katharina; Stadler, Julia; Ritzmann, Mathias; Ade, Julia; Hoelzle, Ludwig E.; Schwarz, Lukas; Rossi, FrancaHemotrophic mycoplasmas (HMs) are cell wall-less, small and uncultivable pathogens, which can cause infections in pigs with no to severe clinical signs and can contribute to significant economic losses in the pig industry. In addition to the known mechanical transmission routes of HMs (e.g., via blood-contaminated instruments or lesions from ranking fights), transmission to pigs by arthropod vectors such as Stomoxys calcitrans is being discussed. To date, there is scant available data concerning the transmission of HMs by stable flies. The objective of this study is to gain more data concerning the occurrence of HMs in Stomoxys calcitrans . Therefore, quantitative real-time PCR was conducted on different stable fly samples (surface washings and whole flies). We found Mycoplasma ( M. ) suis in 5.2% of crushed flies and 4.2% of fly wash solutions, and M. parvum was detected in 5.2% of flies and 9.4% of fly wash solutions. ‘ Candidatus ( Ca .) M. haemosuis’ was not detected in any sample. The mean bacterial loads were 2.0 × 10 2 M. suis /fly, 9.3 × 10 2 M. suis /fly wash solution and, for M. parvum , 2.4 × 10 3 M. parvum /fly and 2.1 × 10 3 M. parvum /fly wash solution. This molecular occurrence of porcine HMs in blood-sucking flies and reasonable bacterial loads in the two- to three-digit range demonstrate that these flies serve as mechanical vectors in stables and are, therefore, of epidemiological importance.