Institut für Nutztierwissenschaften
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/20
Browse
Browsing Institut für Nutztierwissenschaften by Sustainable Development Goals "2"
Now showing 1 - 20 of 34
- Results Per Page
- Sort Options
Publication The active core microbiota of two high-yielding laying hen breeds fed with different levels of calcium and phosphorus(2022) Roth, Christoph; Sims, Tanja; Rodehutscord, Markus; Seifert, Jana; Camarinha-Silva, AméliaThe nutrient availability and supplementation of dietary phosphorus (P) and calcium (Ca) in avian feed, especially in laying hens, plays a vital role in phytase degradation and mineral utilization during the laying phase. The required concentration of P and Ca peaks during the laying phase, and the direct interaction between Ca and P concentration shrinks the availability of both supplements in the feed. Our goal was to characterize the active microbiota of the entire gastrointestinal tract (GIT) (crop, gizzard, duodenum, ileum, caeca), including digesta- and mucosa-associated communities of two contrasting high-yielding breeds of laying hens (Lohmann Brown Classic, LB; Lohmann LSL-Classic, LSL) under different P and Ca supplementation levels. Statistical significances were observed for breed, GIT section, Ca, and the interaction of GIT section x breed, P x Ca, Ca x breed and P x Ca x breed (p < 0.05). A core microbiota of five species was detected in more than 97% of all samples. They were represented by an uncl. Lactobacillus (average relative abundance (av. abu.) 12.1%), Lactobacillus helveticus (av. abu. 10.8%), Megamonas funiformis (av. abu. 6.8%), Ligilactobacillus salivarius (av. abu. 4.5%), and an uncl. Fusicatenibacter (av. abu. 1.1%). Our findings indicated that Ca and P supplementation levels 20% below the recommendation have a minor effect on the microbiota compared to the strong impact of the bird’s genetic background. Moreover, a core active microbiota across the GIT of two high-yielding laying hen breeds was revealed for the first time.Publication An evaluation of the lineage of Brucella isolates in turkey by a whole-genome single-nucleotide polymorphism analysis(2024) Akar, Kadir; Holzer, Katharina; Hoelzle, Ludwig E.; Yıldız Öz, Gülseren; Abdelmegid, Shaimaa; Baklan, Emin Ayhan; Eroğlu, Buket; Atıl, Eray; Moustafa, Shawky A.; Wareth, Gamal; Elkhayat, Manar; Pedersen, KarlBrucellosis is a disease caused by the Brucella ( B. ) species. It is a zoonotic disease that affects farm animals and causes economic losses in many countries worldwide. Brucella has the ability to persist in the environment and infect the host at low doses. Thus, it is more important to trace brucellosis outbreaks, identify their sources of infection, and interrupt their transmission. Some countries already have initial data, but most of these data are based on a Multiple-Locus Variable-Number Tandem-Repeat Analysis (MLVA), which is completely unsuitable for studying the Brucella genome. Since brucellosis is an endemic disease in Turkey, this study aimed to examine the genome of Turkish Brucella isolates collected between 2018 and 2020, except for one isolate, which was from 2012. A total of 28 strains of B. melitensis ( n = 15) and B. abortus ( n = 13) were analyzed using a core-genome single-nucleotide polymorphism (cgSNP) analysis. A potential connection between the Turkish isolates and entries from Sweden, Israel, Syria, Austria, and India for B. melitensis was detected. For B. abortus , there may be potential associations with entries from China. This explains the tight ties found between Brucella strains from neighboring countries and isolates from Turkey. Therefore, it is recommended that strict measures be taken and the possible effects of uncontrolled animal introduction are emphasized.Publication Assessing functional properties of diet protein hydrolysate and oil from fish waste on canine immune parameters, cardiac biomarkers, and fecal microbiota(2024) Cabrita, Ana R. J.; Barroso, Carolina; Fontes-Sousa, Ana Patrícia; Correia, Alexandra; Teixeira, Luzia; Maia, Margarida R. G.; Vilanova, Manuel; Yergaliyev, Timur; Camarinha-Silva, Amélia; Fonseca, António J. M.Locally produced fish hydrolysate and oil from the agrifood sector comprises a sustainable solution both to the problem of fish waste disposal and to the petfood sector with potential benefits for the animal’s health. This study evaluated the effects of the dietary replacement of mainly imported shrimp hydrolysate (5%) and salmon oil (3%; control diet) with locally produced fish hydrolysate (5%) and oil (3.2%) obtained from fish waste (experimental diet) on systemic inflammation markers, adipokines levels, cardiac function and fecal microbiota of adult dogs. Samples and measurements were taken from a feeding trial conducted according to a crossover design with two diets (control and experimental diets), six adult Beagle dogs per diet and two periods of 6 weeks each. The experimental diet, with higher docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids contents, decreased plasmatic triglycerides and the activity of angiotensin converting enzyme, also tending to decrease total cholesterol. No effects of diet were observed on serum levels of the pro-inflammatory cytokines interleukin (IL)-1β, IL-8, and IL-12/IL-23 p40, and of the serum levels of the anti-inflammatory adipokine adiponectin. Blood pressure, heart rate and echocardiographic measurements were similar between diets with the only exception of left atrial to aorta diameter ratio that was higher in dogs fed the experimental diet, but without clinical relevance. Diet did not significantly affect fecal immunoglobulin A concentration. Regarding fecal microbiome, Megasphaera was the most abundant genus, followed by Bifidobacterium , Fusobacterium , and Prevotella , being the relative abundances of Fusobacterium and Ileibacterium genera positively affected by the experimental diet. Overall, results from the performed short term trial suggest that shrimp hydrolysate and salmon oil can be replaced by protein hydrolysate and oil from fish by-products without affecting systemic inflammatory markers, cardiac structure and function, but potentially benefiting bacterial genera associated with healthy microbiome. Considering the high DHA and EPA contents and the antioxidant properties of fish oil and hydrolysate, it would be worthwhile in the future to assess their long-term effects on inflammatory markers and their role in spontaneous canine cardiac diseases and to perform metabolomic and metagenomics analysis to elucidate the relevance of microbiota changes in the gut.Publication Assessing the combination efficiency of some unconventional feed resources with concentrates and Chloris gayana grass in mitigating ruminal methane production in vitro(2024) Melesse, Aberra; Steingass, Herbert; Holstein, Julia; Titze, Natascha; Rodehutscord, MarkusIn a preliminary in vitro study, leaves of Acacia nilotica, Prosopis juliflora, Cajanus cajan, Leucaena leucocephala and seed kernel of Mangifera indica were identified as potential candidates in mitigating ruminal methane (CH4) production. The objective of the current study was to investigate the combination efficiency of these unconventional feeds with concentrate mix (CM) or Chloris gayana grass in CH4 reduction. Two feed combinations in different proportions were incubated in vitro with buffered rumen fluid at Hohenheim Gas test. In combination 1, C. gayana and CM were included as basal substrates, while in combination 2, A. nilotica, P. juliflora, C. cajan, L. leucocephala or M. indica seed kernel were included as CH4 reducing supplements at different proportions. The CH4 reducing potentials of feed combinations were presented as the ratio of CH4 to net gas production and expressed as percentage (pCH4). The pCH4 for CM and C. gayana was 16.7% and 16.9%, respectively, while it ranged from 3.18% in A. nilotica to 13.1% in C. cajan. The pCH4 was reduced (p < 0.05) from 14.6% to 9.39% when A. nilotica was combined with CM. In combination of L. leucocephala or C. cajan with CM, the pCH4 (p < 0.05) was reduced from 16.5% and 16.6% with the lowest proportion to 15.1% and 15.2% with the highest inclusion rate respectively. The combination of C. gayana with L. leucocephala or C. cajan reduced (p < 0.05) the pCH4 from 16.3% and 16.4% to 15.1% and 14.9% respectively. The pCH4 was reduced (p < 0.05) from 13.4% to 7.60% when A. nilotica was combined with C. gayana. Estimated digestible organic matter (dOM) and metabolizable energy (ME) increased (p < 0.05) with increasing proportions of M. indica seed kernel with CM or C. gayana. In conclusion, the combination of the basal substrates with unconventional supplements resulted in CH4 reduction without affecting the dOM and ME at lower inclusion rates. Animal‐based experiments await to validate in vitro findings.Publication The chicken gut microbiome in conventional and alternative production systems(2025) Cheng, Yu-Chieh; Krieger, Margret; Korves, Anna-Maria; Camarinha‑Silva, AméliaThe poultry gut microbiome plays a key role in nutrient digestion, immune function, and overall health. Differences among various farming systems, including conventional, antibiotic-free, free-range, and organic systems, influence microbial composition and function through variations in diet, genetic selection, environmental exposure, and antibiotic use. Conventional systems typically rely on formulated diets and controlled housing conditions, often with routine antimicrobial use. In contrast, organic systems emphasize natural feed ingredients, including roughage, outdoor access, and strict limitations on the use of antibiotics. These divergent practices shape the gut microbiota differently, with organic systems generally associated with greater exposure to environmental microbes and, consequently, greater microbial diversity. However, the implications of this increased diversity for poultry health and performance are complex, as organic systems may also carry a higher risk of pathogen exposure. This review summarizes current findings on the chicken gut microbiome across conventional and alternative production systems (antibiotic-free, free-range, and organic), focusing on microbial diversity, functional potential, and disease resilience. The need for standardized methodologies and consistent nomenclature in microbiome research is also discussed to improve comparability across studies. Understanding how production systems influence the gut microbiota is essential for improving poultry health and productivity while addressing challenges related to antimicrobial resistance and sustainable farming practices.Publication Composition of the ileum microbiota is a mediator between the host genome and phosphorus utilization and other efficiency traits in Japanese quail (Coturnix japonica)(2022) Haas, Valentin; Vollmar, Solveig; Preuß, Siegfried; Rodehutscord, Markus; Camarinha-Silva, Amélia; Bennewitz, JörnBackground: Phosphorus is an essential nutrient in all living organisms and, currently, it is the focus of much attention due to its global scarcity, the environmental impact of phosphorus from excreta, and its low digestibility due to its storage in the form of phytates in plants. In poultry, phosphorus utilization is influenced by composition of the ileum microbiota and host genetics. In our study, we analyzed the impact of host genetics on composition of the ileum microbiota and the relationship of the relative abundance of ileal bacterial genera with phosphorus utilization and related quantitative traits in Japanese quail. An F2 cross of 758 quails was genotyped with 4k genome-wide single nucleotide polymorphisms (SNPs) and composition of the ileum microbiota was characterized using target amplicon sequencing. Heritabilities of the relative abundance of bacterial genera were estimated and quantitative trait locus (QTL) linkage mapping for the host was conducted for the heritable genera. Phenotypic and genetic correlations and recursive relationships between bacterial genera and quantitative traits were estimated using structural equation models. A genomic best linear unbiased prediction (GBLUP) and microbial (M)BLUP hologenomic selection approach was applied to assess the feasibility of breeding for improved phosphorus utilization based on the host genome and the heritable part of composition of the ileum microbiota. Results: Among the 59 bacterial genera examined, 24 showed a significant heritability (nominal p ≤ 0.05), ranging from 0.04 to 0.17. For these genera, six genome-wide significant QTL were mapped. Significant recursive effects were found, which support the indirect host genetic effects on the host’s quantitative traits via microbiota composition in the ileum of quail. Cross-validated microbial and genomic prediction accuracies confirmed the strong impact of microbial composition and host genetics on the host’s quantitative traits, as the GBLUP accuracies based on the heritable microbiota-mediated components of the traits were similar to the accuracies of conventional GBLUP based on genome-wide SNPs. Conclusions: Our results revealed a significant effect of host genetics on composition of the ileal microbiota and confirmed that host genetics and composition of the ileum microbiota have an impact on the host’s quantitative traits. This offers the possibility to breed for improved phosphorus utilization based on the host genome and the heritable part of composition of the ileum microbiota.Publication Cow’s microbiome from antepartum to postpartum: a long-term study covering two physiological challenges(2022) Tröscher-Mußotter, Johanna; Deusch, Simon; Borda-Molina, Daniel; Frahm, Jana; Dänicke, Sven; Camarinha-Silva, Amélia; Huber, Korinna; Seifert, JanaLittle is known about the interplay between the ruminant microbiome and the host during challenging events. This long-term study investigated the ruminal and duodenal microbiome and metabolites during calving as an individual challenge and a lipopolysaccharide-induced systemic inflammation as a standardized challenge. Strong inter- and intra-individual microbiome changes were noted during the entire trial period of 168 days and between the 12 sampling time points. Bifidobacterium increased significantly at 3 days after calving. Both challenges increased the intestinal abundance of fiber-associated taxa, e.g., Butyrivibrio and unclassified Ruminococcaceae. NMR analyses of rumen and duodenum samples identified up to 60 metabolites out of which fatty and amino acids, amines, and urea varied in concentrations triggered by the two challenges. Correlation analyses between these parameters indicated a close connection and dependency of the microbiome with its host. It turns out that the combination of phylogenetic with metabolite information supports the understanding of the true scenario in the forestomach system. The individual stages of the production cycle in dairy cows reveal specific criteria for the interaction pattern between microbial functions and host responses.Publication Defining valid breeding goals for animal breeds(2023) Wellmann, Robin; Gengler, Nicolas; Bennewitz, Jörn; Tetens, JensBackground: The objective of any valid breeding program is to increase the suitability of a breed for its future purposes. The approach most often followed in animal breeding for optimizing breeding goals assumes that the sole desire of the owners is profit maximization. As this assumption is often violated, a generalized approach is needed that does not rely on this assumption. Results: The generalized approach is based on the niche concept. The niche of a breed is a set of environments in which a small population of the breed would have a positive population growth rate. Its growth rate depends on demand from prospective consumers and supply from producers. The approach involves defining the niche that is envisaged for the breed and identifying the trait optima that maximize the breed’s adaptation to its envisaged niche within the set of permissible breeding goals. The set of permissible breeding goals is the set of all potential breeding goals that are compatible with animal welfare and could be reached within the planning horizon of the breeding program. In general, the breed’s adaptation depends on the satisfaction of the producers with the animals and on the satisfaction of the consumers with the products produced by the animals. When consumers buy live animals, then the breed needs to adapt to both the environments provided by the producers, and the environments provided by the consumers. The profit function is replaced by a more general adaptedness function that measures the breed’s adaptation to its envisaged niche. Conclusions: The proposed approach coincides with the traditional approach if the producers have the sole desire to maximize their income, and if consumer preferences are well reflected by the product prices. If these assumptions are not met, then the traditional approach to breeding goal optimization is unlikely to result in a valid breeding goal. Using the example of companion breeds, this paper shows that the proposed approach has the potential to fill the gap.Publication Effects of calcium level and source, formic acid, and phytase on phytate degradation and the microbiota in the digestive tract of broiler chickens(2021) Krieg, Jochen; Borda-Molina, Daniel; Siegert, Wolfgang; Sommerfeld, Vera; Chi, Yung Ping; Taheri, Hamid Reza; Feuerstein, Dieter; Camarinha-Silva, Amélia; Rodehutscord, MarkusBackground: Diet acidification, dietary calcium (Ca) level, and phytase supplementation are known influences on the microbial community in the digestive tract and on phosphorus (P) utilization of broiler chickens. Effects of dietary factors and microbiota on P utilization may be linked because microorganisms produce enzymes that release P from phytate (InsP6), the main source of P in plant feedstuffs. This study aimed to detect linkages between microbiota and InsP6 degradation by acidifying diets (i.e., replacing Ca carbonate (CaCO3) by Ca formate or adding formic acid to CaCO3-containing diets), varying Ca levels, and supplementing phytase in a three-factorial design. We investigated i) the microbial community and pH in the digestive tract, ii) prececal (pc) P and Ca digestibility, and iii) InsP6 degradation. Results: All factors under investigation influenced digesta pH and the microbiota composition. Predicted functionality and relative abundance of microorganisms indicated that diets influenced the potential contribution of the microbiota on InsP degradation. Values of InsP6 degradation and relative abundance of the strains Lactobacillus johnsonii and Lactobacillus reuteri were correlated. Phytase supplementation increased pc InsP6 disappearance, with differences between Ca levels, and influenced concentrations of lower inositol phosphate isomers in the digestive tract. Formic acid supplementation increased pc InsP6 degradation to myo-inositol. Replacing CaCO3 by Ca-formate and the high level of these Ca sources reduced pc InsP6 disappearance, except when the combination of CaCO3 + formic acid was used. Supplementing phytase to CaCO3 + formic acid led to the highest InsP6 disappearance (52%) in the crop and increased myo-inositol concentration in the ileum digesta. Supplementing phytase leveled the effect of high Ca content on pc InsP6 disappearance. Conclusions: The results point towards a contribution of changing microbial community on InsP6 degradation in the crop and up to the terminal ileum. This is indicated by relationships between InsP6 degradation and relative abundance of phosphatase-producing strains. Functional predictions supported influences of microbiota on InsP6 degradation. The extent of such effects remains to be clarified. InsP6 degradation may also be influenced by variation of pH caused by dietary concentration and solubility of the Ca in the feed.Publication Effects of dietary phosphorus and myo-inositol supplementation on NaPi-IIb and TRPV6 protein expression in duodenal apical membranes of laying hens from two strains(2026) Shomina, Nataliia; Sommerfeld, Vera; Hanauska, Anna; Oster, Michael; Rodehutscord, Markus; Huber, KorinnaPhosphorus (P) and calcium (Ca) absorption in the intestine is mediated by apical brush border membrane (BBM) transporters, including the sodium-dependent phosphate (Pi) transporter NaPi-IIb and the Ca²⁺-selective channel TRPV6. Both are highly expressed in the duodenum and exhibit dietary adaptability; yet little is known about how this adaptability varies with strain and age in laying hens. The present study examined the effects of dietary mineral P renunciation and myo-inositol (MI) supplementation on NaPi-IIb and TRPV6 protein expression in the duodenal BBM of Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL) hens. Two independent feeding trials were conducted: hens received diets either with or without mineral P supplementation (wk 15 - 19 and 20 – 24), or with graded MI levels (0 - 3 g/kg; wk 26 – 30). At the end of each period, hens were euthanized and protein expression of NaPi-IIb and TRPV6 in duodenal BBM was studied by western blotting. Statistical correlation with additional traits of mineral metabolism was analyzed. An immunoreactive NaPi-IIb band was detected at ∼ 45 kDa; therefore, all results reported here refer to this NaPi-IIb fragment. Mineral P renunciation did not affect NaPi-IIb fragment or TRPV6 expression in either hen strain. In LSL hens NaPi-IIb fragment expression increased from wk 19 to wk 24, whereas in LB hens it remained unchanged. NaPi-IIb fragment expression was positively associated with duodenal phosphatase activity and plasma estradiol. TRPV6 expression tended to reduce in LB hens from wk 19 to wk 24, but remained stable in LSL hens. TRPV6 expression was positively associated with duodeno-jejunal P content. MI supplementation upregulated NaPi-IIb fragment expression in LB, but downregulated it in LSL hens with high dietary MI levels, without affecting TRPV6. These findings demonstrate strain-dependent regulatory patterns of duodenal expression of NaPi-IIb fragment and TRPV6 in response to physiological stage and MI supply, indicating that mineral feeding strategies may benefit from genotype-specific consideration, whereas the mechanisms underlying MI-related effects require further clarification.Publication Effects of Prosopis juliflora pods on sheep performance and carcass traits, and their methane mitigation potential as assessed in vitro(2025) Tadesse, Assefa; Titze, Natascha; Rodehutscord, Markus; Melesse, AberraThis study aimed to assess the effect of partial substitution of concentrate mix (CM) with Prosopis juliflora pod (PJP) on growth performance and carcass traits in sheep, and its potential to reduce methane (CH4) production in vitro. A total of 25 yearling rams with an initial body weight of 15.8±1.53 kg was randomly assigned to five treatment diets. The diets were a control diet (JP0) and JP0 replaced with PJP at the level of 5% (JP5), 10% (JP10), 15% (JP15), and 20% (JP20). Data were collected on feed intake, body weight, and carcass characteristics. Methane production was determined from 24 h in vitro gas production. The substitution of CM with PJP did not affect feed intake, body weight, weight gain, feed efficiency, and carcass traits (p>0.05). The in vitro CH4 production was reduced (p<0.001) in diets containing increased levels of PJP. The metabolizable energy for JP10, JP15 and JP20 diets was 11.9, 11.6 and 11.5 MJ/kg DM, respectively (p>0.05). In conclusion, replacing CM with PJP did not negatively affect growth performance and carcass characteristics and could be used as potential supplement to mitigate methane emissions. Further in vivo studies involving respiration chambers are recommended to investigate the CH4 reduction potential of PJP.Publication Expression of fibroblast growth factor 23 (FGF23) and αKlotho in two commercial laying hen strains fed with and without dietary mineral P supplements before and after the onset of the laying phase(2025) Meier, Leonie; Wallauch, Nadine; Feger, Martina; Oster, Michael; Sommerfeld, Vera; Schmucker, Sonja; Wimmers, Klaus; Huber, Korinna; Stefanski, Volker; Rodehutscord, Markus; Föller, MichaelMaintenance of phosphate homeostasis is particularly critical in laying hens for bone formation and calcium mobilization. The supplementation of their feed with mineral phosphate is common although recent research questions the usual levels of supplementation. Phosphate homeostasis is classically regulated by active vitamin D (calcitriol) and parathyroid hormone, whereas fibroblast growth factor 23 (FGF23) and its co-receptor αKlotho are novel factors. FGF23 has emerged as an important disease biomarker and αKlotho as an anti-aging factor in mammals, however, little is known about their role in poultry. Here, we studied FGF23 and αKlotho expression in two commercial laying hen strains under conditions of dietary mineral phosphorus renunciation and sufficient phosphorus supply. Fifteen- and 20-week-old Lohmann Brown-Classic (LB) or LSL-Classic (LSL) hens were fed a standard maize-soybean-based diet containing 0 or 1 g/kg additional mineral phosphorus for 4 weeks. The animals were sacrificed, and gene expression studied in different organs by quantitative real-time PCR and protein expression by western blotting. Statistical correlation with further parameters of mineral metabolism was analyzed by Pearson’s correlation coefficient or Spearman’s Rho. As a result, FGF23 bone expression was significantly lower and hepatic FGF23 expression higher in 24-week-old than in 19-week-old hens. Bone, hepatic, and renal αKlotho expression was significantly higher in older than younger animals. Compared to LB hens, LSL hens exhibited higher hepatic αKlotho irrespective of diet and age. Dietary phosphorus content did not significantly affect FGF23 and αKlotho expression. Bone FGF23 expression was positively and hepatic FGF23 negatively associated with plasma phosphate concentration whereas bone FGF23 expression was negatively and hepatic FGF23 positively associated with plasma calcitriol concentration. To conclude, we uncovered a strong impact of age and strain on FGF23 and αKlotho expression in two high performance laying hen strains, effects possibly associated with initiation of the egg-laying phase. Moreover, the regulation of hepatic FGF23 expression differed from the regulation of bone FGF23 expression. Further studies are needed to elucidate the physiological relevance.Publication Food fermentation: an essential unit operation towards secure, sustainable, safe, and sustaining food systems(2025) Gänzle, Michael G.; Seifert, Jana; Weiss, Jochen; Zijlstra, Ruurd T.Publication Functionality of the Na+-translocating NADH:quinone oxidoreductase and quinol:fumarate reductase from Prevotella bryantii inferred from homology modeling(2024) Hau, Jann-Louis; Schleicher, Lena; Herdan, Sebastian; Simon, Jörg; Seifert, Jana; Fritz, Günter; Steuber, JuliaMembers of the family Prevotellaceae are Gram-negative, obligate anaerobic bacteria found in animal and human microbiota. In Prevotella bryantii , the Na + -translocating NADH:quinone oxidoreductase (NQR) and quinol:fumarate reductase (QFR) interact using menaquinone as electron carrier, catalyzing NADH:fumarate oxidoreduction. P. bryantii NQR establishes a sodium-motive force, whereas P. bryantii QFR does not contribute to membrane energization. To elucidate the possible mode of function, we present 3D structural models of NQR and QFR from P. bryantii to predict cofactor-binding sites, electron transfer routes and interaction with substrates. Molecular docking reveals the proposed mode of menaquinone binding to the quinone site of subunit NqrB of P. bryantii NQR. A comparison of the 3D model of P. bryantii QFR with experimentally determined structures suggests alternative pathways for transmembrane proton transport in this type of QFR . Our findings are relevant for NADH-dependent succinate formation in anaerobic bacteria which operate both NQR and QFR.Publication Genomic dissection of the correlation between milk yield and various health traits using functional and evolutionary information about imputed sequence variants of 34,497 German Holstein cows(2024) Schneider, Helen; Krizanac, Ana-Marija; Falker-Gieske, Clemens; Heise, Johannes; Tetens, Jens; Thaller, Georg; Bennewitz, JörnBackground: Over the last decades, it was subject of many studies to investigate the genomic connection of milk production and health traits in dairy cattle. Thereby, incorporating functional information in genomic analyses has been shown to improve the understanding of biological and molecular mechanisms shaping complex traits and the accuracies of genomic prediction, especially in small populations and across-breed settings. Still, little is known about the contribution of different functional and evolutionary genome partitioning subsets to milk production and dairy health. Thus, we performed a uni- and a bivariate analysis of milk yield (MY) and eight health traits using a set of ~34,497 German Holstein cows with 50K chip genotypes and ~17 million imputed sequence variants divided into 27 subsets depending on their functional and evolutionary annotation. In the bivariate analysis, eight trait-combinations were observed that contrasted MY with each health trait. Two genomic relationship matrices (GRM) were included, one consisting of the 50K chip variants and one consisting of each set of subset variants, to obtain subset heritabilities and genetic correlations. In addition, 50K chip heritabilities and genetic correlations were estimated applying merely the 50K GRM. Results: In general, 50K chip heritabilities were larger than the subset heritabilities. The largest heritabilities were found for MY, which was 0.4358 for the 50K and 0.2757 for the subset heritabilities. Whereas all 50K genetic correlations were negative, subset genetic correlations were both, positive and negative (ranging from -0.9324 between MY and mastitis to 0.6662 between MY and digital dermatitis). The subsets containing variants which were annotated as noncoding related, splice sites, untranslated regions, metabolic quantitative trait loci, and young variants ranked highest in terms of their contribution to the traits’ genetic variance. We were able to show that linkage disequilibrium between subset variants and adjacent variants did not cause these subsets’ high effect. Conclusion: Our results confirm the connection of milk production and health traits in dairy cattle via the animals’ metabolic state. In addition, they highlight the potential of including functional information in genomic analyses, which helps to dissect the extent and direction of the observed traits’ connection in more detail.Publication Haemotrophic mycoplasmas infecting pigs: a review of the current knowledge(2024) Ade, Julia; Eddicks, Matthias; Ritzmann, Mathias; Hoelzle, Katharina; Hoelzle, Ludwig E.; Stadler, Julia; Highland, Margaret A.Haemotrophic mycoplasmas (haemoplasmas) are a group of highly specific and adapted bacteria. Three different haemoplasma species in pigs are known to date: Mycoplasma ( M .) suis , M. parvum and ‘ Candidatus ( Ca .) M. haemosuis’. Even though these bacteria have been known in pig farming for a long time, it is difficult to draw general conclusions about the relevance of their infections in pigs. This review summarizes the current knowledge on the three porcine haemoplasma species with regards to clinical and pathological descriptions, pathobiology, epidemiology and diagnostics as well as prevention and therapy. Overall, it is clear that considerably more data are available for M. suis than for the other two species, but generally, porcine haemoplasmas were found to be highly prevalent all over the world. Mycoplasma suis is the most virulent species, causing acute infectious anaemia in pigs (IAP), whereas M. parvum usually results in chronic and subclinical infections associated with performance losses. Little is known about the clinical significance of the recently discovered third porcine species ‘ Ca . M. haemosuis’. So far, the described pathogenic mechanisms mainly include direct destruction of erythrocytes via adhesion, invasion, eryptosis and nutrient scavenging, indirect erythrocyte lysis due to immune-mediated events and immune dysregulation processes. A review of published diagnostic data confirms PCR assays as the current standard method, with various cross-species and species-specific protocols. Overall, there is a need for further examination to obtain valuable insights for practical application, specifically regarding the importance of subclinical infections in naturally infected animals. An essential requirement for this will be to gain a more comprehensive understanding of the mechanisms operating between the host and the pathogen.Publication Hemotrophic mycoplasmas - vector transmission in livestock(2024) Arendt, Mareike; Stadler, Julia; Ritzmann, Mathias; Ade, Julia; Hoelzle, Katharina; Hoelzle, Ludwig E.; Dozois, Charles M.Hemotrophic mycoplasmas (HMs) are highly host-adapted and specialized pathogens infecting a wide range of mammals including farm animals, i.e., pigs, cattle, sheep, and goats. Although HMs have been known for over 90 years, we still do not know much about the natural transmission routes within herds. Recently, it has been repeatedly discussed in publications that arthropod vectors may play a role in the transmission of HMs from animal to animal. This is mainly since several HM species could be detected in different potential arthropod vectors by PCR. This review summarizes the available literature about the transmission of bovine, porcine, ovine, and caprine HM species by different hematophagous arthropod vectors. Since most studies are only based on the detection of HMs in potential vectors, there are rare data about the actual vector competence of arthropods. Furthermore, there is a need for additional studies to investigate, whether there are biological vectors in which HMs can multiply and be delivered to new hosts.Publication Identification of the key molecular drivers of phosphorus utilization based on host miRNA-mRNA and gut microbiome interactions(2020) Ponsuksili, Siriluck; Reyer, Henry; Hadlich, Frieder; Weber, Frank; Trakooljul, Nares; Oster, Michael; Siengdee, Puntita; Muráni, Eduard; Rodehutscord, Markus; Camarinha-Silva, Amélia; Bennewitz, Jörn; Wimmers, KlausPhosphorus is an essential mineral for all living organisms and a limited resource worldwide. Variation and heritability of phosphorus utilization (PU) traits were observed, indicating the general possibility of improvement. Molecular mechanisms of PU, including host and microbial effects, are still poorly understood. The most promising molecules that interact between the microbiome and host are microRNAs. Japanese quail representing extremes for PU were selected from an F2 population for miRNA profiling of the ileal tissue and subsequent association with mRNA and microbial data of the same animals. Sixty-nine differentially expressed miRNAs were found, including 21 novel and 48 known miRNAs. Combining miRNAs and mRNAs based on correlated expression and target prediction revealed enrichment of transcripts in functional pathways involved in phosphate or bone metabolism such as RAN, estrogen receptor and Wnt signaling, and immune pathways. Out of 55 genera of microbiota, seven were found to be differentially abundant between PU groups. The study reveals molecular interactions occurring in the gut of quail which represent extremes for PU including miRNA-16-5p, miR-142b-5p, miR-148a-3p, CTDSP1, SMAD3, IGSF10, Bacteroides, and Alistipes as key indicators due to their trait-dependent differential expression and occurrence as hub-members of the network of molecular drivers of PU.Publication Insights into Ethiopian honey bee diversity based on wing geomorphometric and mitochondrial DNA analyses(2020) Hailu, Teweldemedhn Gebretinsae; D’Alvise, Paul; Tofilski, Adam; Fuchs, Stefan; Greiling, Juergen; Rosenkranz, Peter; Hasselmann, MartinTraditional beekeeping has been playing important socio-economic roles in Ethiopia for millennia. The country is situated in northeast Africa, where ranges of major evolutionary lineages of Apis mellifera adjoin. However, studies on the classification and distribution of subspecies and lineages of honey bees in the country are partly inconsistent, either proposing multiple subspecies and lineages or a unique A. m. simensis. This study was conducted with the aim of elucidating Ethiopian honey bees in reference to African subspecies and major global lineages using wing geometric morphometrics and COI-COII mitochondrial DNA analyses. For this purpose, 660 worker bees were collected from 66 colonies representing highland, midland, and lowland zones in different locations. Both methods indicated that the samples from this study form a distinct cluster together with A. m. simensis reference. In addition, forewing venation patterns showed that most of the Ethiopian samples are separate from all reference subspecies, except A. m. simensis. Analysis of COI-COII sequences revealed five DraI haplotypes (Y2, Y1, A1, and O5’), of which one was new denoted as Y3. Moreover, centroid size strongly associated with elevation. In conclusion, the results supported that Ethiopian honey bees are distinct both at lineage and subspecies levels; however, there is an indication of lineage O in the north.Publication Interrelationship of myo-inositol pathways with systemic metabolic conditions in two strains of high-performance laying hens during their productive life span(2021) Gonzalez-Uarquin, Fernando; Sommerfeld, Vera; Rodehutscord, Markus; Huber, KorinnaAdaptation to metabolic challenges is an individual process in animals and human, most likely based on genetic background. To identify novel pathways of importance for individual adaptation to a metabolic challenge such as egg production in laying hens, myo-inositol (MI) metabolism and plasma metabolite profiles during the productive lifespan were examined in two genetically different strains, Lohmann Brown-Classic (LB) and LSL-Classic (LSL) hens. They were housed during the productive lifespan and sampled at 10, 16, 24, 30 and 60 weeks of age. The targeted AbsoluteIDQ p180 Kit was used for metabolite profiling in plasma whereas a MI enzymatic kit and ELISAs were used to quantify tissue MI concentrations and MI key enzymes (IMPase 1 and MIOX), respectively. As major finding, kidney MIOX was differently expressed in LB and LSL hens with higher amounts in LB. The onset of egg laying between week 16 and 24 of life span was associated with a clear change in the metabolite profiles, however LSL hens and LB hens adapt differently. Pearson’s correlation analyses over all hens at all time points indicated that higher expression of MI degrading enzyme MIOX was related to markers indicating metabolic stress.
