Institut für Bodenkunde und Standortslehre
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/10
Browse
Browsing Institut für Bodenkunde und Standortslehre by Sustainable Development Goals "13"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Publication Distribution of Al, Fe, Si, and DOC between size fractions mobilised from topsoil horizons with progressing degree of podzolisation(2022) Krettek, Agnes; Stein, Mathias; Rennert, ThiloAluminium, Fe, Si, and dissolved organic C (DOC) accumulate in the subsoil of Podzols after mobilisation in the topsoil. We conducted laboratory experiments with topsoil horizons with progressing degree of podzolisation by irrigation with artificial rainwater at varying intensity and permanence. We monitored the concentrations and distribution of mobilised Al, Fe, Si, and DOC between size fractions (< 1000 Dalton, 1 kDa– < 0.45 µm, and > 0.45 µm). Total eluate concentrations were increased at the onset of the experiments and after the first irrigation interruption, indicating non-equilibrium release. There was no statistical effect of the degree of podzolisation on element concentrations. Release of Al, Fe, and DOC was mostly dominant in the fraction 1 kDa– < 0.45 µm, indicating metals complexed by larger organic molecules and colloids. Silicon released was dominantly monomeric silicic acid < 1 kDa. Particularly with the least podzolised soils, Al and Si concentrations < 1 kDa might have been controlled by short-range ordered aluminosilicates, while their transport in colloidal form was unlikely. Our study pointed to both quantitative and qualitative seasonality of element release during podzolisation, to decoupling of Al and Si release regarding size, and to different minerals that control element release as a function of the degree of podzolisation.Publication Drought impacts on plant–soil carbon allocation - integrating future mean climatic conditions(2025) Leyrer, Vinzent; Blum, Juliette; Marhan, Sven; Kandeler, Ellen; Zimmermann, Telse; Berauer, Bernd J.; Schweiger, Andreas H.; Canarini, Alberto; Richter, Andreas; Poll, ChristianDroughts affect soil microbial abundance and functions—key parameters of plant–soil carbon (C) allocation dynamics. However, the impact of drought may be modified by the mean climatic conditions to which the soil microbiome has previously been exposed. In a future warmer and drier world, effects of drought may therefore differ from those observed in studies that simulate drought under current climatic conditions. To investigate this, we used the field experiment ‘Hohenheim Climate Change,’ an arable field where predicted drier and warmer mean climatic conditions had been simulated for 12 years. In April 2021, we exposed this agroecosystem to 8 weeks of drought with subsequent rewetting. Before drought, at peak drought, and after rewetting, we pulse‐labelled winter wheat in situ with 13CO2 to trace recently assimilated C from plants to soil microorganisms and back to the atmosphere. Severe drought decreased soil respiration (−35%) and abundance of gram‐positive bacteria (−15%) but had no effect on gram‐negative bacteria, fungi, and total microbial biomass C. This pattern was not affected by the mean precipitation regime to which the microbes had been pre‐exposed. Reduced mean precipitation had, however, a legacy effect by decreasing the proportion of recently assimilated C allocated to the microbial biomass C pool (−50%). Apart from that, continuous soil warming was an important driver of C fluxes throughout our experiment, increasing plant biomass, root sugar concentration, labile C, and respiration. Warming also shifted microorganisms toward utilizing soil organic matter as a C source instead of recently assimilated compounds. Our study found that moderate shifts in mean precipitation patterns can impose a legacy on how plant‐derived C is allocated in the microbial biomass of a temperate agroecosystem during drought. The overarching effect of soil warming, however, suggests that how temperate agroecosystems respond to drought will mainly be affected by future temperature increases.Publication Estimating effects of ocean environmental conditions on summer flounder (Paralichthys dentatus) distribution(2025) Deen, Samar; Jauss, Verena; Sullivan, Patrick J.The relative abundance of summer flounder ( Paralichthys dentatus ) differs over space and time with changes in environmental factors, such as depth, bottom temperature, sea surface temperature (SST) and bottom salinity. We use the integrated nested Laplace approximation (INLA) approach to account for the random effects arising from either over-dispersion, or spatial and temporal autocorrelation. We explore how the different assumptions in the spatial temporal models result in varying model predictions. The results indicate that the distribution of summer flounder is correlated with depth, regional increases in bottom temperature, SST and bottom salinity. We find that in the Fall relative abundance increased 10–15% with a 1∘C increase in SST, by 12% with each 1∘C increase in bottom temperature and 3–4% with each meter increase in depth across all models. In the spring, relative abundance increased by about 30% with each 1∘C increase in SST with an upper preferred temperature between 10-20∘C. Our study also shows that models that include spatio-temporally correlated variables can inadvertently be over parameterized when including higher order interaction terms between spatial and temporal random effects. This can lead to inflated variances in the estimates and predictions as well as lengthening model convergence times. Therefore, care should be taken in identifying the level of model complexity given the indirect implications of these results on fisheries management and marine ecology.Publication A global database of soil microbial phospholipid fatty acids and enzyme activities(2025) van Galen, Laura G.; Smith, Gabriel Reuben; Margenot, Andrew J.; Waldrop, Mark P.; Crowther, Thomas W.; Peay, Kabir G.; Jackson, Robert B.; Yu, Kailiang; Abrahão, Anna; Ahmed, Talaat A.; Alatalo, Juha M.; Anslan, Sten; Anthony, Mark A.; Araujo, Ademir Sergio Ferreira; Ascher-Jenull, Judith; Bach, Elizabeth M.; Bahram, Mohammad; Baker, Christopher C. M.; Baldrian, Petr; Bardgett, Richard D.; Barrios-Garcia, M. Noelia; Bastida, Felipe; Beggi, Francesca; Benning, Liane G.; Bragazza, Luca; Broadbent, Arthur A. D.; Cano-Díaz, Concha; Cates, Anna M.; Cerri, Carlos E. P.; Cesarz, Simone; Chen, Baodong; Classen, Aimeé T.; Dahl, Mathilde Borg; Delgado-Baquerizo, Manuel; Eisenhauer, Nico; Evgrafova, Svetlana Yu.; Fanin, Nicolas; Fornasier, Flavio; Francisco, Romeu; Franco, André L. C.; Frey, Serita D.; Fritze, Hannu; García, Carlos; García-Palacios, Pablo; Gómez-Brandón, María; Gonzalez-Polo, Marina; Gozalo, Beatriz; Griffiths, Robert; Guerra, Carlos; Hallama, Moritz; Hiiesalu, Inga; Hossain, Mohammad Zabed; Hu, Yajun; Insam, Heribert; Jassey, Vincent E. J.; Jiang, Lili; Kandeler, Ellen; Kohout, Petr; Kõljalg, Urmas; Krashevska, Valentyna; Li, Xiaofei; Lu, Jing-Zhong; Lu, Xiankai; Luo, Shan; Lutz, Stefanie; Mackie-Haas, Kathleen Allison; Maestre, Fernando T.; Malmivaara-Lämsä, Minna; Mangelsdorf, Kai; Manjarrez, Maria; Marhan, Sven; Martin, Ashley; Mason, Kelly E.; Mayor, Jordan; McCulley, Rebecca L.; Moora, Mari; Morais, Paula V.; Muñoz-Rojas, Miriam; Murugan, Rajasekaran; Nottingham, Andrew T.; Ochoa, Victoria; Ochoa-Hueso, Raúl; Oja, Jane; Olsson, Pål Axel; Öpik, Maarja; Ostle, Nick; Peltoniemi, Krista; Pennanen, Taina; Pescador, David S.; Png, G. Kenny; Poll, Christian; Põlme, Sergei; Potapov, Anton M.; Priemé, Anders; Pritchard, William; Puissant, Jeremy; Rocha, Sandra Mara Barbosa; Rosinger, Christoph; Ruess, Liliane; Sayer, Emma J.; Scheu, Stefan; Sinsabaugh, Robert L.; Slaughter, Lindsey C.; Soudzilovskaia, Nadejda A.; Sousa, José Paulo; Stanish, Lee; Sugiyama, Shu-ichi; Tedersoo, Leho; Trivedi, Pankaj; Vahter, Tanel; Voriskova, Jana; Wagner, Dirk; Wang, Cong; Wardle, David A.; Whitaker, Jeanette; Yang, Yuanhe; Zhong, Zhiwei; Zhu, Kai; Ziolkowski, Lori A.; Zobel, Martin; van den Hoogen, JohanSoil microbes drive ecosystem function and play a critical role in how ecosystems respond to global change. Research surrounding soil microbial communities has rapidly increased in recent decades, and substantial data relating to phospholipid fatty acids (PLFAs) and potential enzyme activity have been collected and analysed. However, studies have mostly been restricted to local and regional scales, and their accuracy and usefulness are limited by the extent of accessible data. Here we aim to improve data availability by collating a global database of soil PLFA and potential enzyme activity measurements from 12,258 georeferenced samples located across all continents, 5.1% of which have not previously been published. The database contains data relating to 113 PLFAs and 26 enzyme activities, and includes metadata such as sampling date, sample depth, and soil pH, total carbon, and total nitrogen. This database will help researchers in conducting both global- and local-scale studies to better understand soil microbial biomass and function.Publication How land-use intensity affects sexual and parthenogenetic oribatid mites in temperate forests and grasslands in Germany(2021) Wehner, Katja; Schuster, Romina; Simons, Nadja K.; Norton, Roy A.; Blüthgen, Nico; Heethoff, MichaelIntensive land use has been shown to alter the composition and functioning of soil communities. Due to their low dispersal ability, oribatid mites are particularly vulnerable to land-use intensification and species which are not adjusted to management-related disturbances become less abundant. We investigated how different land-use parameters in forests and grasslands affect oribatid mite diversity and abundance, with a focus on: (1) species-level impacts, by classifying species as increasing (‘winners’) or decreasing (‘losers’) in abundance with higher land-use intensity, and (2) reproductive impact, by investigating whether sexual and parthenogenetic species react differently. We collected 32,542 adult oribatid mites in 60 forests and grasslands of known land-use intensity in two regions of Germany. Diversity and total abundance as well as the proportion of sexual species were higher in forests than in grasslands. Diversity declined with higher land-use intensity in forests, but increased with higher mowing and fertilization in grasslands. Depending on land-use parameter and region, abundance either declined or remained unaffected by increasing intensity. Gravidity was higher in sexual than in parthenogenetic species and sexuals had 1.6× more eggs per gravid female. Proportions of sexual species and gravid females decreased with land-use intensity in forests, but increased with mowing in grasslands. At the species level, 75% of sexuals and 87.5% of parthenogens were ‘losers’ of higher percentages of dead wood originating from management-related disturbances. Across land-use parameters and habitats, a similar proportion of sexual and parthenogenetic oribatid mite species were ‘losers’ of high land-use intensity. However, ‘winner’ species were more common among sexuals.Publication An overall review on influence of root architecture on soil carbon sequestration potential(2024) Srivastava, R. K.; Yetgin, Ali; Srivastava, R. K.; Institute of Soil Science and Land Evaluation, Biogeophysics, University of Hohenheim, 70599, Stuttgart, Germany; Yetgin, Ali; Toros Agri Industry, Research and Development Center, Mersin, TurkeySoil carbon sequestration is a vital ecosystem function that mitigates climate change by absorbing atmospheric carbon dioxide (CO2). Root characteristics such as depth, diameter, length, and branching pattern affect soil carbon dynamics through root-soil interactions and organic matter breakdown. Here we review field surveys, laboratory analysis, and mathematical modeling to understand how root structures affect soil carbon storage. Further, certain root features increase soil carbon sequestration, suggesting that selective breeding and genetic engineering of plants could maximize this ecological benefit. However, more research is needed to understand the complex interactions between roots, soil biota, and soil organic matter under changing environmental conditions. In addition, the benefit of climate change mitigation methods and soil carbon models from the inclusion of root architecture was reviewed. Studies in the realm of root-soil interactions encompass a variety of academic fields, including agronomy, ecology, soil science, and plant physiology. Insights into how roots interact with their soil environment and the effects of these interactions on plant health, agricultural productivity, and environmental sustainability have been gained through this research.Publication Seed dispersal by wind decreases when plants are water‐stressed, potentially counteracting species coexistence and niche evolution(2021) Zhu, Jinlei; Lukić, Nataša; Rajtschan, Verena; Walter, Julia; Schurr, Frank M.Hydrology is a major environmental factor determining plant fitness, and hydrological niche segregation (HNS) has been widely used to explain species coexistence. Nevertheless, the distribution of plant species along hydrological gradients does not only depend on their hydrological niches but also depend on their seed dispersal, with dispersal either weakening or reinforcing the effects of HNS on coexistence. However, it is poorly understood how seed dispersal responds to hydrological conditions. To close this gap, we conducted a common‐garden experiment exposing five wind‐dispersed plant species (Bellis perennis, Chenopodium album, Crepis sancta, Hypochaeris glabra, and Hypochaeris radicata) to different hydrological conditions. We quantified the effects of hydrological conditions on seed production and dispersal traits, and simulated seed dispersal distances with a mechanistic dispersal model. We found species‐specific responses of seed production, seed dispersal traits, and predicted dispersal distances to hydrological conditions. Despite these species‐specific responses, there was a general positive relationship between seed production and dispersal distance: Plants growing in favorable hydrological conditions not only produce more seeds but also disperse them over longer distances. This arises mostly because plants growing in favorable environments grow taller and thus disperse their seeds over longer distances. We postulate that the positive relationship between seed production and dispersal may reduce the concentration of each species to the environments favorable for it, thus counteracting species coexistence. Moreover, the resulting asymmetrical gene flow from favorable to stressful habitats may slow down the microevolution of hydrological niches, causing evolutionary niche conservatism. Accounting for context‐dependent seed dispersal should thus improve ecological and evolutionary models for the spatial dynamics of plant populations and communities.Publication A slow-fast trait continuum at the whole community level in relation to land-use intensification(2024) Neyret, Margot; Le Provost, Gaëtane; Boesing, Andrea Larissa; Schneider, Florian D.; Baulechner, Dennis; Bergmann, Joana; de Vries, Franciska T.; Fiore-Donno, Anna Maria; Geisen, Stefan; Goldmann, Kezia; Merges, Anna; Saifutdinov, Ruslan A.; Simons, Nadja K.; Tobias, Joseph A.; Zaitsev, Andrey S.; Gossner, Martin M.; Jung, Kirsten; Kandeler, Ellen; Krauss, Jochen; Penone, Caterina; Schloter, Michael; Schulz, Stefanie; Staab, Michael; Wolters, Volkmar; Apostolakis, Antonios; Birkhofer, Klaus; Boch, Steffen; Boeddinghaus, Runa S.; Bolliger, Ralph; Bonkowski, Michael; Buscot, François; Dumack, Kenneth; Fischer, Markus; Gan, Huei Ying; Heinze, Johannes; Hölzel, Norbert; John, Katharina; Klaus, Valentin H.; Kleinebecker, Till; Marhan, Sven; Müller, Jörg; Renner, Swen C.; Rillig, Matthias C.; Schenk, Noëlle V.; Schöning, Ingo; Schrumpf, Marion; Seibold, Sebastian; Socher, Stephanie A.; Solly, Emily F.; Teuscher, Miriam; van Kleunen, Mark; Wubet, Tesfaye; Manning, Peter; Neyret, Margot; Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Le Provost, Gaëtane; INRAE, Bordeaux Sciences Agro, ISVV, SAVE, Villenave d’Ornon, France; Boesing, Andrea Larissa; Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Schneider, Florian D.; Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Baulechner, Dennis; Justus Liebig University, Department of Animal Ecology, Giessen, Germany; Bergmann, Joana; Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany; de Vries, Franciska T.; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; Fiore-Donno, Anna Maria; Terrestrial Ecology, Institute of Zoology, University of Cologne, Köln, Germany; Geisen, Stefan; Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands; Goldmann, Kezia; Helmholtz Centre for Environmental Research (UFZ), Soil Ecology Department, Halle/Saale, Germany; Merges, Anna; Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Saifutdinov, Ruslan A.; A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia; Simons, Nadja K.; Ecological Networks, Technical University Darmstadt, Darmstadt, Germany; Tobias, Joseph A.; Department of Life Sciences, Imperial College London, Ascot, UK; Zaitsev, Andrey S.; Justus Liebig University, Department of Animal Ecology, Giessen, Germany; Gossner, Martin M.; Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland; Jung, Kirsten; Institut of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany; Kandeler, Ellen; Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany; Krauss, Jochen; Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany; Penone, Caterina; Institute of Plant Sciences, University of Bern, Bern, Switzerland; Schloter, Michael; Helmholtz Zentrum Muenchen, Research Unit for Comparative Microbiome Analysis, Oberschleissheim, Germany; Schulz, Stefanie; Helmholtz Zentrum Muenchen, Research Unit for Comparative Microbiome Analysis, Oberschleissheim, Germany; Staab, Michael; Ecological Networks, Technical University Darmstadt, Darmstadt, Germany; Wolters, Volkmar; Justus Liebig University, Department of Animal Ecology, Giessen, Germany; Apostolakis, Antonios; Department of Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany; Birkhofer, Klaus; Department of Ecology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany; Boch, Steffen; Swiss Federal Research Institute WSL, Birmensdorf, Switzerland; Boeddinghaus, Runa S.; Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany; Bolliger, Ralph; Institute of Plant Sciences, University of Bern, Bern, Switzerland; Bonkowski, Michael; Terrestrial Ecology, Institute of Zoology, University of Cologne, Köln, Germany; Buscot, François; Helmholtz Centre for Environmental Research (UFZ), Soil Ecology Department, Halle/Saale, Germany; Dumack, Kenneth; Terrestrial Ecology, Institute of Zoology, University of Cologne, Köln, Germany; Fischer, Markus; Institute of Plant Sciences, University of Bern, Bern, Switzerland; Gan, Huei Ying; Senckenberg Centre for Human Evolution and Palaeoenvironments Tübingen (SHEP), Tübingen, Germany; Heinze, Johannes; Department of Biodiversity, Heinz Sielmann Foundation, Wustermark, Germany; Hölzel, Norbert; Institute of Landscape Ecology, University of Münster, Münster, Germany; John, Katharina; Justus Liebig University, Department of Animal Ecology, Giessen, Germany; Klaus, Valentin H.; Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland; Kleinebecker, Till; Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany; Marhan, Sven; Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany; Müller, Jörg; Department of Nature Conservation, Heinz Sielmann Foundation, Wustermark, Germany; Renner, Swen C.; Ornithology, Natural History Museum Vienna, Vienna, Autria, Germany; Rillig, Matthias C.; Freie Universität Berlin, Institute of Biology, Berlin, Germany; Schenk, Noëlle V.; Institute of Plant Sciences, University of Bern, Bern, Switzerland; Schöning, Ingo; Department of Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany; Schrumpf, Marion; Department of Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany; Seibold, Sebastian; Technical University of Munich, TUM School of Life Sciences, Freising, Germany; Socher, Stephanie A.; Paris Lodron University Salzburg, Department Environment and Biodiversity, Salzburg, Austria; Solly, Emily F.; Helmholtz Centre for Environmental Research (UFZ), Computation Hydrosystems Department, Leipzig, Germany; Teuscher, Miriam; University of Göttingen, Centre of Biodiversity and Sustainable Land Use, Göttingen, Germany; van Kleunen, Mark; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China; Wubet, Tesfaye; German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena-, Leipzig, Germany; Manning, Peter; Senckenberg Biodiversity and Climate Research Centre, Frankfurt, GermanyOrganismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a ‘slow-fast’ axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that ‘slow’ and ‘fast’ strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.Publication Spatiotemporal climatic signals in cereal yield variability and trends in Ethiopia(2025) Abera, Kidist; Gayler, Sebastian; Piepho, Hans‑Peter; Streck, Thilo; Abera, Kidist; Institute of Soil Science and Land Evaluation, Biogeophysics, University of Hohenheim, Stuttgart, Germany; Gayler, Sebastian; Institute of Soil Science and Land Evaluation, Biogeophysics, University of Hohenheim, Stuttgart, Germany; Piepho, Hans‑Peter; Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Streck, Thilo; Institute of Soil Science and Land Evaluation, Biogeophysics, University of Hohenheim, Stuttgart, GermanyClimatic variability and recurrent drought can strongly affect the variability of crop yield and are therefore frequently considered a risk to food security in Ethiopia. A better understanding of how crop yields vary in space and time, and their relationship to climatic and other driving factors, can assist in enhancing agricultural production and adapting to and mitigating the impacts of climate change. We applied a multiple linear regression model to examine the spatiotemporal climatic signal (air temperature, precipitation, and solar radiation) in the yields of the most important crops (maize, sorghum, tef, and wheat) over the period 1995–2018. An analysis of the climatic data indicated that growing season temperature increased significantly in most regions, but the trends in precipitation were not significant. The yields of maize, sorghum, tef, and wheat tended to increase across most crop-growing areas, particularly in the west, but was highly variable. The results highlight large spatial differences in the contribution of climatic trends to crop-yield variability across Ethiopian regions. The trends in climatic variability did not significantly affect crop yields in some areas, whereas in the main crop-growing areas, up to − 39.2% of yield variability could be attributed to the climatic trends. Specifically, the climatic trends negatively affected maize yields but positively affected sorghum, tef, and wheat yields. Nationally, the average impacts of climatic trends on crop yields was relatively small, ranging from a 3.2% decrease for maize to a 0.7% increase for wheat. In contrast, technological advancements contributed substantially more to yield gains, with annual increases ranging from 4.3% for wheat to 5.1% for sorghum. These findings highlight the dominant role of non-climatic drivers, particularly improved agricultural technology, in shaping crop yield trends. Our findings underscore the spatial heterogeneity of climate impacts on agriculture and highlight the critical importance of technological progress in enhancing crop productivity. They also provide actionable insights for designing crop- and location-specific adaptation strategies, and stress the need for integrated, climate-resilient development pathways in the region.Publication Unveiling wheat’s future amidst climate change in the Central Ethiopia Region(2024) Senbeta, Abate Feyissa; Worku, Walelign; Gayler, Sebastian; Naimi, Babak; Kuhn, Arnd Jürgen; Fenu, GiuseppeQuantifying how climatic change affects wheat production, and accurately predicting its potential distributions in the face of future climate, are highly important for ensuring food security in Ethiopia. This study leverages advanced machine learning algorithms including Random Forest, Maxent, Boosted Regression Tree, and Generalised Linear Model alongside an ensemble approach to accurately predict shifts in wheat habitat suitability in the Central Ethiopia Region over the upcoming decades. An extensive dataset consisting of 19 bioclimatic variables (Bio1–Bio19), elevation, solar radiation, and topographic positioning index was refined by excluding collinear predictors to increase model accuracy. The analysis revealed that the precipitation of the wettest month, minimum temperature of the coldest month, temperature seasonality, and precipitation of the coldest quarter are the most influential factors, which collectively account for a significant proportion of habitat suitability changes. The future projections revealed that up to 100% of the regions currently classified as moderately or highly suitable for wheat could become unsuitable by 2050, 2070, and 2090, illustrating a dramatic potential decline in wheat production. Generally, the future of wheat cultivation will depend heavily on developing varieties that can thrive under altered conditions; thus, immediate and informed action is needed to safeguard the food security of the region.
