Institut für Bodenkunde und Standortslehre

Browse

Recent Submissions

Now showing 1 - 20 of 46
  • Publication
    Formation and properties of inorganic Si-contaminant compounds
    (2023) Stein, Mathias; Rennert, Thilo
    Environmental contamination is the most pressing issue of our global society. Among others, contamination with potentially toxic elements (PTEs) such as cadmium (Cd), copper (Cu), and lead (Pb) threatens organisms, humans, and entire ecosystems. Silicon (Si) is known to benefit the resilience to such abiotic stresses and its application showed to alleviate PTE toxicity. These beneficial effects are predominantly attributed to in planta processes, but PTE immobilization in soil induced by Si addition has also been reported. However, interactions between silicic acid and Cd, Cu, and Pb at undersaturation of their silicates and other mineral phases remains elusive. Silicic acid, which is dissolved Si, may interact with cationic PTEs in soil, altering their environmental fate. At oversaturation, PTEs and silicic acid may precipitate forming metal silicates, whereas at undersaturation PTEs may be incorporated into the network of polymerized silicic acid or inner-spherically complexed on the negatively charged surface of polymeric silicic acid, forming particulate Si-contaminant compounds. Aiming to elucidate the extent and the mechanism of the potential PTE immobilization, long-term formation experiments in aqueous solution, a soil column experiment, and batch adsorption experiments including isothermal titration calorimetry (ITC) experiments were conducted. Long-term formation experiments in aqueous solution were conducted at undersaturation of PTE silicates and other mineral phases. Time-dependent particle size and charge changes were measured in between 211 days using dynamic light scattering and phase analysis light scattering. Solid phases were characterized by Fourier transform infrared (FTIR) spectroscopy and 29Si nuclear magnetic resonance (NMR) spectroscopy. Particle size measurements revealed a positive effect of cationic PTEs on silicic acid polymerization (Cu>Cd>Pb). However, only traces (2.1‰ Cd, 2‰ Cu and 1.4‰ Pb of the initially added PTEs) were bound during the polymerization of silicic acid. Copper was incorporated in the polymeric network of silicic acid during its polymerization as indicated by FTIR spectra and 29Si NMR relaxation experiments. Cadmium was only outer-spherically adsorbed. The long-term formation experiments revealed that particulate compounds form due to silicic acid/PTE interactions at undersaturation of other mineral phases. Soil column experiments were conducted to investigate the formation of Si-contaminant compounds in an acidic soil (pH 4.6). Therefore, a Haplic Phaeozem was preconditioned with Cu and Cd in the absence and presence of additional monomeric silicic acid and subsequently irrigated with artificial rainwater. Interactions of silicic acid and PTEs were investigated by monitoring the elemental composition of the eluates, and the size and charge of the particles eluted. After irrigation, total and exchangeable Si and PTE contents were analysed. Silicic acid application resulted in larger particles in the eluates, indicating silicic acid polymerization. The molar metal:Si ratios of the eluates and the significant correlation between Si and exchangeable metals indicated that particularly Cu formed Si-contaminant compounds in the soil, enhancing its retention. However, translocation of PTEs in particulate form, associated with polymerized silicic acid, was indicated. The negative charge and the very small size of the formed compounds may facilitate translocation from soil into groundwater. Batch adsorption experiments and ITC experiments were conducted to examine mechanism and extent of PTE adsorption to polymeric silicic acid. These experiments did not reveal any adsorption of the metals on polymeric silicic acid at pH 4 to 6 and after 24 h, which was underpinned by the results of the ITC experiments. However, zeta-potential measurements indicated weak electrostatic interactions between the negatively charged silanol groups and the PTEs. These electrostatic interactions may be the initial step of Si-contaminant compound formation. This thesis elucidates extent and mechanisms of silicic acid, either mono- or polymeric, and PTE interactions, showing the formation of particulate compounds from the reaction between silicic acid and cationic PTEs in aqueous solution and in an acidic soil. Particularly Cu formed stable compounds during silicic acid polymerization. However, the interactions showed a low extent and mainly weak electrostatic interactions, concluding that the addition of monomeric silicic acid to acidic soils may not be a quantitatively effective measure to reduce PTE mobility in soils. Aggregation effects, resulting from freezing/thawing or drying/rewetting, however, could alter the mobility of Si-contaminant compounds. These effects may be subject of future research, as well as the spectroscopic detection of Si-contaminant compounds in soils.
  • Publication
    Reducing uncertainty in prediction of climate change impacts on crop production in Ethiopia
    (2024) Rettie, Fasil Mequanint; Streck, Thilo
    Ethiopia, with an economy heavily reliant on agriculture, is among the countries most vulnerable to climate change. It faces recurrent climate extreme events that result in devastating impacts and acute food shortages for millions of people. Studies that focus on their influence on agriculture, especially crop productivity, are of particular importance. However, only a few studies have been conducted in Ethiopia, and existing studies are spatially limited and show considerable spatial invariance in predicted impacts, as well as discrepancies in the sign and direction of impacts. Therefore, a robust, regionally focused, and multi-model assessment of climate change impacts is urgently needed. To guide policymaking and adaptation strategies, it is essential to quantify the impacts of climate change and distinguish the different sources of uncertainty. Against this backdrop, this study consisted of several key components. Using a multi-crop model ensemble, we began with a local climate change impact assessment on maize and wheat growth and yield across three sites in Ethiopia . We quantified the contributions of different sources of uncertainty in crop yield prediction. Our results projected a of 36 to 40% reduction in wheat grain yield by 2050, while the impact on maize was modest. A significant part of the uncertainty in the projected impact was attributed to differences in the crop growth models. Importantly, our study identified crop growth model-associated uncertainty as larger than the rest of the model components. Second, we produced a high-resolution daily projections database for rainfall and temperature to serve the requirement for impact modeling at regional and local levels using a statistical downscaling technique based on state-of-the-art GCMs under a range of emission scenarios called Shared Socioeconomic Pathways (SSPs). The evaluated results suggest that the downscaling strategy significantly reduced the biases between the GCM outputs and the observation data and minimized the errors in the projections. Third, we explored the magnitude and spatial patterns of trends in observed and projected changes in climate extremes indices based on downscaled high-resolution daily climate data to serve as a baseline for future national or regional-level impact assessment. Our results show largely significant and spatially consistent trends in temperature-derived extreme indices, while precipitation-related extreme indices are heterogeneous in terms of spatial distribution, magnitude, and statistical significance coverage. The projected changes in temperature-related indices are dominated by the uncertainties in the GCMs, followed by uncertainties in the SSPs. Unlike the temperature-related indices, the uncertainty from internal climate variability constitutes a considerable proportion of the total uncertainty in the projected trends. Fourth, we examined the regional-scale impact of climate change on maize and wheat yields by crop modeling, in which we calibrated and validated three process-based crop models to guide the design of national-level adaptation strategies in Ethiopia. Our analysis showed that under a high-emissions scenario, the national-level median wheat yield is expected to decrease by 4%, while maize yield is expected to increase by 2.5% by the end of the century. The CO2 fertilization effect on the crop simulations would offset the projected negative impact. Crop model spread followed by GCMs was identified as the largest contributor to overall uncertainty to the estimated yield changes. In summary, our study quantifies the impact of climate change and demonstrates the importance of a multi-model ensemble approach. We highlight the significant impacts of climate change on wheat yield in Ethiopia and the importance of crop model improvements to reduce overall uncertainty in the projected impact.
  • Publication
    Regionalising a soil-plant model ensemble to simulate future yields under changing climatic conditions
    (2023) Bendel, Daniela Silke; Streck, Thilo
    Models are supportive in depicting complex processes and in predicting their effects. Climate models are applied in many areas to assess the possible consequences of climate change. Even though Global Climate Models (GCM) have now been regionalised to the national level, their resolution of down to 5x5 km2 is still rather coarse from the perspective of a plant modeller. Plant models were developed for the field scale and work spatially explicitly. This requires to make adjustments if they are applied at coarser scales. The regionalisation of plant models is reasonable and advantageous against the background of climate change and policy advice, both gaining in importance. The higher the spatial and temporal heterogeneity of a region, the greater the computational need. The (dis)aggregation of data, frequently available in differing resolutions or quality, is often unavoidable and fraught with high uncertainties. In this dissertation, we regionalised a spatially-explicit crop model ensemble to improve yield projections for winter wheat under a changing climate. This involved upscaling a crop model ensemble consisting of three crop models to the Stuttgart region, which has an area of 3,654 km2. After a thorough parameter estimation performed with a varying number of Agricultural Response Units on a high-performance computing cluster, yield projections up to the year 2100 were computed. The representative concentration pathways of the Intergovernmental Panel on Climate Change (IPCC) RCP2.6 (large reduction of CO2 emissions) and RCP8.5 (worst case scenario) served as a framework for this effort. Under both IPCC scenarios, the model ensemble predicts stable winter wheat yields up to 2100, with a moderate decrease of 5 dt/ha for RCP2.6 and a small increase of 1 dt/ha for RCP8.5. The variability within the model ensemble is particularly high for RCP8.5. Results were obtained without accounting for a potential progress in wheat breeding.
  • Publication
    Bedeutung der Stickstoffumsetzung und externer Stickstoffquellen für die Entwicklung von FFH-Mähwiesen in Baden-Württemberg
    (2023) Kukowski, Sina Louise; Streck, Thilo
    1. AIM AND OBJECTIVES OF THE STUDY. The condition of the species-rich lowland hay meadows (habitat type 6510) in Germany is increasingly deteriorating. One cause of the deterioration is the supply of reactive nitrogen (N). To counteract the ongoing deterioration, it is necessary to understand the relationships between external N inputs via the atmosphere and fertilization, internal N turnover in the soil, plant uptake and growth, as well as possible links to the conservation degree of this habitat type. The overall objective of this dissertation is therefore to contribute to a better process-based understanding of the complete N cycle of Fauna-Flora-Habitat (FFH) meadows. 2. MATERIAL & METHODS. The interdisciplinary structure of this thesis includes different approaches to study inputs, turnover and outputs of N. With respect to N input via the airborne pathway, the focus was primarily placed on the hitherto poorly studied relationships between ammonia concentration and specific N-sensitive species groups in FFH lowland hay meadows. These relations were analyzed by means of generalized mixed models (GLM) based on nationwide data. In addition, further site-specific factors with a significant influence on the conservation degree of FFH meadows were identified using GLM. For the quantification of soil-borne N turnover processes, an empirical approach was chosen, including the determination of gross N turnover rates using the 15N isotope dilution method. To record these N dynamics, an intensive monitoring of gross and net N fluxes (mineralization, nitrification, ammonium consumption, nitrate consumption) in soils from different primary substrate and with different meadow conservation degree was carried out in 2016 and 2017. The results were merged using a process-based agroecosystem model (EXPERT-N), which was adjusted for habitat type 6510 to the collected data. The adapted model was applied to other sites of habitat type 6510 distributed throughout the state of Baden-Württemberg, which served to investigate spatial and temporal patterns of relevant nitrogen fluxes over an extended time period (1996 until 2012) and had been characterized in terms of soil and vegetation. 3. RESULTS. The nationwide data show a statistically significant decrease of habitat-typical low-nutrient indicator species and an increase of N indicator species with increasing atmospheric ammonia concentration on lowland hay meadows in Baden-Württemberg. Whether this is an effect of the atmospheric ammonia concentration or whether differences in agricultural land use structure play the decisive role could not be clarified with the available data. The intensive monitoring on selected FFH lowland hay meadows showed that soil-borne gross nitrification rates on soils from calcareous parent substrate (high pH) differed significantly from those from decalcified substrate (low pH). Both gross mineralization and gross nitrification were characterized by high temporal variability at all sites, which could not be explained by measurements of soil temperature and soil water content. Determination of net N turnover rates showed almost no variability and could not be used to draw conclusions about actual gross turnover rates in soil. The N-turnover model adapted for habitat type 6510 was able to represent spatial and temporal patterns over an extensive period of time. Simulation results showed high spatial and temporal variability for most N cycle variables. Soil organic N mineralization has a critical influence on the amount of plant-available N and thus has a direct impact on yield and N removal. On high clay-content soils and sites with high organic matter content, the model overestimated mineralization. External N inputs, such as moderate organic fertilization or atmospheric N deposition, were less crucial for yield. Additional N input is always a driving factor for N turnover in soil in the short term. With already high turnover levels, N turnover continues to increase and thus the risk of nutrient imbalances also increases. In the long term, the decisive factor for the N balance of FFH lowland hay meadows is whether N supply exceeds removal, whether the mineralizable organic N pools are thus increased, or whether a balance between supply and removal can be achieved. If soil internal N turnover is high, as it was the case on most of the simulated sites, a longer depletion phase should be applied before. In summary, this dissertation provides insight into the complexity of N cycling of FFH meadows. Using various approaches (statistical analyses, field trials, process-based modelling), it contributes to a better understanding of site-specific N turnover and the role of external N sources for the development of this ecosystem.
  • Publication
    Constraints on microbial pesticide degradation in soils
    (2023) Wirsching, Johannes; Kandeler, Ellen
    Pesticides are an essential component of intensified agriculture and have contributed significantly to the increase in food production observed in recent decades. Since 1960, pesticide use has increased by a factor of fifteen to twenty, representing a market value of $40 billion in 2016. Soil monitoring campaigns to track pesticide contamination of croplands across Europe are quantifying pesticide residues whose residence times in soils exceed expected values. Diffuse contamination by pesticide residues raises concerns about soil functions, soil biodiversity, and food safety, as well as the transport of contaminants by wind and water to surface waters or to adjacent, organically managed croplands. Data on the frequency of occurrence and concentrations of pesticide residues in soil demonstrate a discrepancy between the determination of persistence and subsequent approval and their actual fate in soil. This raises the question of whether degradability of individual organic compounds has been adequately studied. Microbiological degradation is the most important process for reducing pesticide loads in soils. A reliable estimate of pesticide residence time requires an expanded understanding of the factors limiting microbial degradation. Degradation of anthropogenic organic chemicals in soils occurs much more slowly than would be expected based on their physicochemical properties. While processes that determine the fate of pesticides in soil have often been studied at different spatial and temporal scales, reasons for discrepancies between the observed complete degradation of pesticides under laboratory conditions and their persistence in the field remain unclear. This thesis addresses this challenge by focusing on the central question of why inherently biodegradable compounds in soils display increased persistence under field conditions. Organic contaminants in low but detectable and environmentally significant concentrations could remain in the soil once available concentrations fall below a threshold where bioenergetic growth restrictions come into play. In addition, potential microbial and biophysical limitations and environmental factors such as soil temperature and soil moisture are often examined separately in current degradation studies. Combinations of temperature and soil moisture changes associated with different concentration levels have been less well examined, resulting in an incomplete understanding of the degradation process. Another key factor in the demonstrated discrepancy between predicted and actual persistence in the field could be due to laboratory experiments that cannot account for field-scale processes. Therefore, degradation rates determined in laboratory experiments cannot be confidently extrapolated to the field scale. . This thesis identified further important regulatory mechanisms for microbially mediated pesticide degradation. The previously unknown concentration-dependent degradation dynamics and the concentration-dependent influence of limiting environmental conditions on microbial degradation emphasize the importance of studies using a realistic concentration range. Evidence of deep transport of a highly sorptive pesticide such as glyphosate primarily via preferential flow pathways into the subsoil with lower degradation dynamics underscores the need to include processes that can only be verified in field studies as part of risk assessments. The results of this thesis suggest that the biodegradation rates of pesticides are not homogeneous at field scales and may account in part for the discrepancy between complete degradation of pesticides under laboratory conditions and their persistence in the field. Laboratory studies in which soil samples are pooled and mixed to obtain a single "representative" sample can provide a simplified understanding of the process, but the complexity, particularly that of soil heterogeneity, of pesticide distribution and microbial degradation associated with prevailing climatic conditions, requires calibration of previously used methods in field studies and possibly at landscape, watershed, or regional scales. The scale-dependent degradation aspect will become even more important in the future; as soil properties and processes that control the toxicological aspects of contaminants include temperature and moisture, and changes associated with climate change will lead to an increase in extreme precipitation, longer dry periods, and soil erosion.
  • Publication
    Microplastics interactions with soil organisms
    (2022) Schöpfer, Lion; Kandeler, Ellen
    Microplastics (MP) are plastic particles from 100 nm to 5 mm with different shapes and chemical compositions. In aquatic ecosystems, MP have proven to affect the biological fitness of aquatic organisms, enter the food web, and act as vectors of pollutants. Agricultural soils are sinks for MP due to inputs via sewage sludges, plastic mulches, and organic fertilizers. However, ecological consequences of MP in agricultural soils are unknown. This doctoral thesis aimed to evaluate the risk of conventional and biodegradable MP for soil organisms in agricultural soils. A microcosm study was combined with a field study and a nematode study to investigate background concentrations, the persistence, and the biodegradation of MP in the soil, and effects of MP on soil microorganisms and nematodes. In the microcosm study, the influence of plastic type, particle size, and soil moisture on the biodegradation of MP in the soil and on effects on soil microorganisms were examined under controlled conditions (25 °C, 230 days). The abundance and composition of the main soil microbial groups was analyzed via phospholipid fatty acids (PLFAs) as biomarkers; activities of C cycling enzymes driving the decomposition of differently complex substances were analyzed as proxies for C turnover. To understand better the role of MP as an interface for specific microbial processes in the soil, e.g. the enzymatic hydrolysis of MP, enzyme activities of individual MP particles extracted from the soil were measured. The site of the field study was a conventionally managed agricultural soil (silt-loam Luvisol) of the Heidfeldhof, University of Hohenheim. No practices associated with significant inputs of MP have been conducted at the site in the past (sewage sludge, organic fertilizers, plastic mulch). In a randomized complete block design, the effects of MP, organic fertilizers (digestate and compost), and their interactions on soil microbiological indicators (microbial biomass, soil enzymes) were studied. Before the setup of the field study, MP background concentrations (particle-based) in the soil were analyzed. The persistence of added MP in the soil was evaluated by comparing MP concentrations in the soil after 1 month and 17 months with initial MP concentrations after addition. In the nematode study, the soil-dwelling nematode Caenorhabditis elegans was exposed to MP feed suspensions on agar plates. The uptake of MP through nematodes and the influence of plastic type and concentration on MP effects on nematode reproduction and body length were examined. In all studies, artificially fragmented MP from a conventional polymer (low-density polyethylene, LDPE) and a biodegradable polymer blend (poly(lactic acid) and poly(butylene adipate-co-terephtalate), PLA/PBAT) were used. The occurrence of both LDPE- and PLA/PBAT-MP is likely in agricultural soils because these are used for plastic mulches and compost bags. Results from this thesis suggest that (1) agricultural soils, including those without management practices related to significant MP entry, contain various MP, indicating diffuse MP inputs via atmospheric deposition, littering, and the abrasion of machinery coatings (a possible newly identified pathway), (2) also biodegradable MP persist and are slowly biodegraded in the soil implying a long term exposure risk for soil organisms to MP, (3) MP have no acute negative effects on microorganisms and C turnover, (4) MP form a specific habitat in the soil, the plastisphere, where MP-specific processes take place, e.g. the enzymatic hydrolysis of PLA/PBAT, (5) MP can enter the soil food web via nematodal uptake and affect nematode reproduction, which could destabilize the soil food web.
  • Publication
    Soil microorganisms as hidden miners of phosphorus in soils under different cover crop and tillage treatments
    (2022) Hallama, Moritz; Kandeler, Ellen
    Phosphorus (P) is one of the most limiting plant nutrients for agricultural production. The soil microbial community plays a key role in nutrient cycling, affecting access of roots to P, as well as mobilization and mineralization of organic P (Porg). This thesis aimed to better understand the potential of cover crops to enhance plant-soil-microbe interactions to improve the availability of P. This dissertation consists of a meta-analysis of and two field experiments. The used methods showed that microbial P, the activity of P-cycling enzymes and PLFAs increased under cover crops, indicating an enhanced potential for organic P cycling. Gram- positive and Gram-negative bacteria, and to a lesser extent also arbuscular mycorrhizal fungi, increased their abundance with cover crops. However, saprotrophic fungi could benefit most from the substrate input derived from cover crop roots or litter. Enzyme-stable Porg shifted towards pools of a greater lability in the active soil compartments (rhizosheath and detritusphere). The effects of agricultural management, such as cover crop species choice and tillage, were detectable, but weaker compared to the effect of the presence of cover crops. With the obtained results, the research aims of this thesis could be successfully addressed. We were able to confirm that cover crops have the potential to improve main crops’ access to P. Furthermore, we presented and discussed three pathways of P benefit. In the plant biomass pathway, P is cycled through cover crop biomass and becomes available for the main crop upon litter decomposition. The microbial enhancement pathway describes how the cover crop’s interaction with soil microbes increases their abundance and activity, thereby increasing the availability of Porg. Some cover crop species seem to be capable of utilizing a biochemical modification pathway, where changes in the sorption capacity of the soil result in a greater quantity of plant-available phosphate. However, the latter pathway was apparently not important in the crop rotations used in our field experiments. The data also allowed us to characterize ways in which plant-soil-microbe interactions under cover crops affected the relationship of soil microbial functions to the enzymatic availability of Porg pools. Cover crops increased the abundance and activity of microbes, especially fungi, as well as microbial P. This enhancement in P-cycling potential shifted Porg toward pools of greater availability to added enzymes. However, the relation between enzymes and Porg pools is complex and is possibly affected by soil P composition and other site characteristics, indicating the need for further research in this area. Finally, we elucidated how the choice of cover crop species and agricultural management can shift the relative importance of the pathways for the P benefit of the main crop, while site-specific management allows farmers to adapt to local conditions and to optimize the functions of their agroecosystems. In conclusion, our results indicate that the pathways of cover crop derived P benefit take place simultaneously. We confirmed the potential of cover crop biomass for the cycling of P, and we suggest that our observed increases in the availability of soil Porg are related to microbial abundance and activity. The interactions of cover cropping and tillage indicate also that P benefit can be optimized by management decisions. Finally, these new insights into soil phosphorus cycling in agroecosystems have the potential to support further development of more sustainable agricultural systems.
  • Publication
    Modeling microbial regulation of pesticide turnover in soils
    (2022) Chavez Rodriguez, Luciana; Streck, Thilo
    Pesticides are widely used for pest control in agriculture. Besides their intended use, their long-term fate in real systems is not well understood. They may persist in soils, thereby altering ecosystem functioning and ultimately affecting human health. Pesticide fate is assessed through dissipation experiments in the laboratory or the field. While field experiments provide a close representation of real systems, they are often costly and can be influenced by many unknown or uncontrollable variables. Laboratory experiments, on the other hand, are cheaper and have good control over the governing variables, but due to simplification, extrapolation of the results to real systems can be limited. Mechanistic models are a powerful tool to connect lab and field data and help us to improve our process understanding. Therefore, I used mechanistic, process-based models to assess key microbial regulations of pesticide degradation. I tested my model hypotheses with two pesticide classes: i) chlorophenoxy herbicides (MCPA (2-methyl-4-chlorophenoxyacetic acid) and 2,4-D (2,4-Dichlorophenoxyacetic acid)), and ii) triazines (atrazine (AT)), in an ideal scenario, where bacterial degraders and pesticides are co-localized. This thesis explores some potential controls of pesticide degradation in soils: i) regulated gene expression, ii) mass-transfer process across the bacterial cell membranes, iii) bioenergetic constraints, and iv) environmental factors (soil temperature and moisture). The models presented in this thesis show that including microbial regulations improves predictions of pesticide degradation, compared to conventional models based on Monod kinetics. The gene-centric models achieved a better representation of microbial dynamics and enable us to explore the relationship between functional genes and process rates, and the models that used transition state theory to account for bioenergetic constraints improved the description of degradation at low concentrations. However, the lack of informative data for the validation of model processes hampered model development. Therefore, in the fourth part of this thesis, I used atrazine with its rather complex degradation pathway to apply a prospective optimal design method to find the optimal experimental designs to enable us identifying the degradation pathway present in a given environment. The optimal designs found suggest to prioritize determining metabolites and biomass of specific degraders, which are not typically measured in environmental fate studies. These data will lead to more robust model formulations for risk assessment and decision-making. With this thesis, I revealed important regulations of pesticide degradation in soils that help to improve process understanding and model predictions. I provided simple model formulations, for example the Hill function for gene expression and transition state theory for bioenergetic growth constraints, which can easily be integrated into biogeochemical models. My thesis covers initial but essential steps towards a predictive pesticide degradation model usable for risk assessment and decision-making. I also discuss implication for further research, in particular how mechanistic process-based modeling could be combined with new technologies like omics and machine learning.
  • Publication
    Multi-objective and multi-variate global sensitivity analysis of the soil-crop model XN-CERES in Southwest Germany
    (2021) Witte, Irene; Streck, Thilo
    Soil-crop models enjoy ever-greater popularity as tools to assess the im- pact of environmental changes or management strategies on agricultural production. Soil-crop models are designed to coherently simulate the crop, nitrogen (N) and water dynamics of agricultural fields. However, soil-crop models depend on a vast number of uncertain model inputs, i.e., initial conditions and parameters. To assess the uncertainty in the simulation results (UCSR) and how they can be apportioned among the model inputs of the XN-CERES soil-crop model, an uncertainty and global sensitivity analysis (GSA) was conducted. We applied two different GSA methods, moment-independent and variance-based methods in the sense of the Factor Prioritization and the Factor Fixing setting. The former identifies the key drivers of uncertainty, i.e., which model input, if fixed to its true value, would lead to the greatest reduction of the UCSR. The latter identifies the model inputs that cannot be fixed at any value within their value range without affecting the UCSR. In total we calculated six sensitivity indices (SIs). The overall objective was to assess the cross-sub-model impact of parameters and the overall determinability of the XN-CERES applied on a deep loess soil profile in Southwest Germany. Therefore, we selected 39 parameters and 16 target variables (TGVs) to be included in the GSA. Furthermore, we assessed a weekly time series of the parameter sensitivities. The sub-models were crop, water, nitrogen and flux. In addition, we also compared moment-independent (MI) and variance-based (VB) GSA methods for their suitability for the two settings. The results show that the parameters of the TGVs of the four groups cannot be considered independently. Each group is impacted by the parameters of the other groups. Crop parameters are most important, followed by the Mualem van Genuchten (MvG) parameters. The nitrate (NO3-) content and the matric potential are the two TGVs that are most affected by the inter- action of parameters, especially crop and MvG parameters. However, the model output of these two TGVs is highly skewed and leptokrutic. Therefore, the variance is an unsuitable representation of the UCSR, and the reliability of the variance-based sensitivity indices SIVB is curtailed. Nitrogen group parameters play an overall minor role for the uncertainty of the whole XN-CERES, but nitrification rates can be calibrated on ammonium (NH4+) measurements. Considering the initial conditions shows the high importance of the initial NO3-; content. If it could be fixed, the uncertainty of crop groups’ TGVs, the matric potential and the N content in the soil could be reduced. Hence, multi-year predictions of yield suffer from uncertainty due to the simulated NO3-; content. Temporally resolved parameter show the big dependence between the crop’s development stage and the other 15 TGVs becomes visible. High temporally resolved measurements of the development stage are important to univocally estimate the crop parameters and reduce the uncertainty in the vegetative and generative biomass. Furthermore, potential periods of water and N-limiting situations are assessed, which is helpful for deriving management strategies. In addition, it become clear that measurement campaigns should be conducted at the simulation start and during the vegetation period to have enough information to calibrate the XN-CERES. Regarding the performance of the different GSA methods and the different SIs, we conclude that the sensitivity measure relying on the Kolmogorov-Smirnov metric (betaks) is most stable. It converges quickly and has no issues with highly skewed and leptokrutic model output distributions. The assessments of the first-effect index and the betaks provide information on the additivity of the model and parameters that cannot be fixed without impacting the simulation results. In summary, we could only identify three parameters that have no direct impact on any TGV at any time and are hence not determinable from any measurements of the TGVs considered. Furthermore, we can conclude that the groups’ parameters should not be calibrated independently because they always affect the uncertainty of the selected TGV directly or via interacting. However, no TGV is suitable to calibrate all parameters. Hence, the calibration of the XN-CERES requires measurements of TGVs from each group, even if the modeler is only interested in one specific TGV, e.g., yield. The GSA should be repeated in a drier climate or with restricted rooting depth. The convergence of the values for the Sobol indices remains an issue. Even larger sample sizes, another convergence criteria or graphical inspection cannot alleviate the issue. However, we can conclude that the sub-models of the XN-CERES cannot be considered in- dependently and that the model does what it is designed for: coherently simulating the crop, N and water dynamics with their interactions.
  • Publication
    Towards a better understanding of land surface exchange processes over agricultural crop stands
    (2020) Bohm, Kristina; Streck, Thilo
    Weather and climate models are useful tools for projecting the influence of global climate change on the regional scale. These models are critically dependent on an accurate representation of soil-plant-atmosphere interactions, which are simulated by Land Surface Models (LSMs). The present PhD thesis was designed to improve the representation of land surface exchange processes of croplands in the Noah-MP land surface model. This thesis aims: a) to elucidate the nature of the energy imbalance over a winter wheat stand and to identify the appropriate post-closure method for the study region Kraichgau, southwest Germany; b) to improve the representation of the green vegetation fraction (GVF) dynamics of croplands in the Noah-MP for a more accurate computation of surface energy and water fluxes; and c) to determine the effect of aggregating different crop types with various shares into a single generic cropland class on the simulation of water and energy exchange between land surface and atmosphere.
  • Publication
    Biological regulation of subsoil C-cycling
    (2019) Preußer, Sebastian; Kandeler, Ellen
    Soils are the largest terrestrial reservoir of organic carbon (OC). Substantial proportions of the stored OC are found in stabilized form in deeper soil layers. Beside the quality and quantity of C input from plant biomass, C storage in soil is primarily controlled by the microbial decomposition capacity. Various physical, chemical and biological factors (e.g., substrate availability, temperature, water content, pH, texture) vary within soil profiles and directly or indirectly influence the abundance, composition and activity of microbial communities and thus the microbial C turnover. While soil microbiological research has so far focused mainly on processes in topsoil, the mechanisms of C storage and turnover in subsoil are largely unknown. The objective of the present thesis was therefore to investigate the specific influence of substrate availability and different environmental factors as well as their interactions on microbial communities and their regulatory function in subsoil C-cycling. This objective was addressed in three studies. In the first and second study, one-year field experiments were established in which microbial communities from different soil depths were exposed to altered habitat conditions to identify crucial factors influencing the spatial and temporal development of microbial abundance and substrate utilization within soil profiles. This was achieved by reciprocal translocation of soils between subsoil horizons (first study) and topsoil and subsoil horizons (second study) in combination with addition of 13C-labelled substrates and different sampling dates. In the third study, a flow cascade experiment with soil columns from topsoil and subsoil horizons and soil minerals (goethite) coated with 13C-labelled organic matter (OM) was established. This laboratory experiment investigated the importance of exchange processes of OM with reactive soil minerals for the quality and quantity of dissolved OM and the influence of these soil micro-habitats on microbial abundance and community composition with increasing soil depth. In the first study, the reciprocal translocation of subsoils from different soil depths revealed that due to comparable micro-climatic conditions and soil textures within the subsoil profile, no changes in microbial biomass, community composition and activity occurred. Moreover, increasing microbial substrate utilization in relation to the quantity of added substrate indicated that deep soil layers exhibit high potential for microbial C turnover. However, this potential was constrained by low soil moisture in interplay with the coarse soil texture and the resulting micro-scale fragmentation of the subsoil environment. The bacterial substrate utilization was more affected by this spatial separation between microorganisms and potentially available substrate than that of fungi, which was further confirmed by the translocation experiment with topsoil and subsoil in the second study. While the absolute substrate utilization capacity of bacteria decreased from the more moist topsoil to the drier subsoil, fungi were able to increase their substrate utilization and thus to partially compensate the decrease in C input from other sources. Furthermore, the addition of root litter as a preferential C source of fungal decomposer communities led to a pronounced fungal growth in subsoil. The third study demonstrated the high importance of reactive soil minerals both in topsoil and in subsoil for microbial growth due to extensive exchange processes of OM and the associated high availability of labile C. In particular copiotrophic bacteria such as Betaproteobacteria benefited from the increased C availability under non-limiting water conditions leading to a pronounced increase in bacterial dominance in the microbial communities of these soil micro-habitats. In conclusion, this thesis showed that subsoil exhibits great potential for both bacterial and fungal C turnover, albeit this potential is limited by various factors. This thesis, however, allowed to determine the specific effects of these factors on bacteria and fungi and their function in subsoil C-cycling and thus to identify those factors of critical importance. The micro-climate in subsoil, in particular soil moisture, was the primary factor limiting bacterial growth and activity, whereas fungi were more strongly restricted by substrate limitations.
  • Publication
    Phosphorus-acquisition strategies of canola, wheat and barley in soil amended with sewage sludges
    (2019) Faucon, M.-P.; Kandeler, Ellen; Lambers, Hans; Firmin, S.; Michel, E.; Houben, D.; Nobile, Cécile
    Crops have different strategies to acquire poorly-available soil phosphorus (P) which are dependent on their architectural, morphological, and physiological root traits, but their capacity to enhance P acquisition varies with the type of fertilizer applied. The objective of this study was to examine how P-acquisition strategies of three main crops are affected by the application of sewage sludges, compared with a mineral P fertilizer. We carried out a 3-months greenhouse pot experiment and compared the response of P-acquisition traits among wheat, barley and canola in a soil amended with three sludges or a mineral P fertilizer. Results showed that the P-acquisition strategy differed among crops. Compared with canola, wheat and barley had a higher specific root length and a greater root carboxylate release and they acquired as much P from sludge as from mineral P. By contrast, canola shoot P content was greater with sludge than with mineral P. This was attributed to a higher rootreleased acid phosphatase activity which promoted the mineralization of sludge-derived P-organic. This study showed that contrasted P-acquisition strategies of crops allows increased use of renewable P resources by optimizing combinations of crop and the type of P fertilizer applied within the cropping system.
  • Publication
    Equifinality, sloppiness and emergent minimal structures of biogeochemical models
    (2019) Marschmann, Gianna; Streck, Thilo
    Process-based biogeochemical models consider increasingly the control of microorganisms on biogeochemical processes. These models are used for a number of important purposes, from small-scale (mm-cm) controls on pollutant turnover to impacts of global climate change. A major challenge is to validate mechanistic descriptions of microbial processes and predicted emergent system responses against experimental observations. The validity of model assumptions for microbial activity in soil is often difficult to assess due to the scarcity of experimental data. Therefore, most complex biogeochemical models suffer from equifinality, i.e. many different model realizations lead to the same system behavior. In order to minimize parameter equifinality and prediction uncertainty in biogeochemical modeling, a key question is to determine what can and cannot be inferred from available data. My thesis aimed at solving the problem of equifinality in biogeochemical modeling. Thereby, I opted to test a novel mathematical framework (the Manifold Boundary Approximation Method) that allows to systematically tailor the complexity of biogeochemical models to the information content of available data.
  • Publication
    Gamma-ray spectrometry as auxiliary information for soil mapping and its application in research for development
    (2019) Reinhardt, Nadja; Hermann, Ludger
    Sustainable yield increase is desperately needed for enhancing global food security, in particular, in Sub-Saharan Africa. There population growth and resulting land degradation accompany with extreme weather events. As a consequence, famines frequently occur. For planning result-oriented agricultural research for development (R4D) like in the Trans-Sec project (www.trans-sec.org), in which this thesis was embedded, local environmental, as well as social realities must be taken into account prior to any cropping experiment. Only this way, cost-efficient and adapted solutions for local subsistence farmers, but also conclusive outcomes for researchers, can be obtained. For this purpose, methods that work quick and cost-efficient are a prerequisite. In this respect, gamma-ray spectrometry as rapid soil survey method is reviewed in the first part of this thesis. Soil or geological exploration are easily accomplishable, in either airborne (with helicopters, airplanes or drones) or proximal (stationary or on-the-go) surveys. Gamma decays of the naturally occurring isotopes 40-potassium (40K), 238-uranium (238U) and 232-thorium (232Th) that appear in sufficient amounts and decay energies for field measurements are counted per time. The counts are then transferred to the respective element contents. Water and soil organic matter attenuate gamma signals, on one hand hampering signal interpretation, on the other hand indirectly enabling soil water content and peat mappings. Gamma-ray signatures of soils depend on (1) mineral composition of the bedrock, as well as (2) weathering intensity and related soil forming processes, that, in turn, influence the environmental fate of 40K, 238U and 232Th. Hence, due to soil formation heterogeneity at the landscape scale, resulting gamma signatures are locally specific and make soils readily distinguishable. In two villages in central Tanzania, participatory soil mapping in combination with gamma-ray spectrometry served as rapid and reliable approach to map local soils for later cropping experiments. Local farmers indicated major soil types on satellite images of the village area, which were the basis for further mapping steps. Fingerprint gamma-ray signatures of reference soil profiles were collected. Subsequent gamma-ray surveys on transect walks accelerated soil unit delineation for the final soil map. Challenges were misunderstandings related to language issues, variable soil knowledge of individual farmers and erosion leading to staggered soil profiles and non-distinctive signatures in some places. The combination of indigenous knowledge and gamma-ray spectrometry, nevertheless, led to a quick overview of the study area and made laboratory soil analyses largely redundant. The gained gamma-ray signal information were further statistically evaluated. For this purpose, distinction of major local soil types via K/Th ratios were graphically and statistically tested. The results showed that gamma-ray spectrometry is a sound method to distinguish certain local clay illuviation soil types by their K/Th ratios. The last part of the thesis covers the Trans-SEC approach of testing innovations for sustainable agricultural yield increase. Pearl millet (Pennisetum glaucum (L.) R.Br.) as the typical staple food in the study region was used as example crop. The process was scientist-led but local farmers selected the innovations that they considered adequate to their needs. Tied ridging for enhancing the water storage and placed fertilizer for increasing fertilizer efficiency was offered for their choice. Transferability of results from on-station experiments and demonstration plots in the village to farmers plots and trans-disciplinary issues are discussed. The number of factors that influence the result, as well as data insecurity increased with every level of spatial aggregation (on-station, demonstration plot and on-farm plots in the village). Soil type, position of the plot in the landscape (lateral water flow, distance to homesteads and, hence, fertility status) were the major influencing factors. In particular, the data insecurity related to on-farm trials due to low control intensity suggests to only conduct such experiments if large numbers of replicates (large N-trials) are feasible in future approaches. In conlusion, the thesis shows, that local knowledge combined with modern science is beneficial for agricultural R4D projects. Shortcomings within the transdisciplinary experimental approaches are pointed out. In particular, with respect to knowledge gained from the linkage of local experience and scientific approaches, there is still high potential. For this purpose, social and applied natural sciences should both strive for more interdisciplinary collaboration.
  • Publication
    Spatial and temporal variations of microorganisms in grassland soils : influences of land-use intensity, plants and soil properties
    (2019) Boeddinghaus, Runa S.; Kandeler, Ellen
    Grassland ecosystems provide a wide range of services to human societies (Allan et al., 2015) and plants and soil microorganisms have been identified as key drivers of ecosystem functioning (Soliveres et al., 2016). Therefore, understanding soil microbial distributions and processes in agricultural grassland soils is crucial for characterizing these ecosystems and for predicting how they may shift in a changing environment. Yet we are only beginning to understand these complex ecosystems, which account for about 26% of the world’s terrestrial surface (FAOSTATS, 2018), making it especially urgent to gain better insights into the effects of land-use intensity on soil microbial properties and plant-microbe interactions. This thesis was conducted to evaluate the impact land-use intensity has on soil microbial biogeography of grasslands with respect to both spatial patterns and temporal changes in soil microbial abundance, function (in terms of enzyme activities), and community composition. It also investigated the relationships between plants and the spatial and temporal distributions of soil microorganisms. Thereby both, land-use intensity effects and plant-microbe interactions, were assessed in light of ecological niche and neutral theory. This thesis is based on three observational studies conducted on from one to 150 continuously farmed, un-manipulated grassland sites in three regions of Germany within the Biodiversity Exploratories project (DFG priority program 1374). The first study assessed the effects of land-use intensity and physico-chemical soil properties on the spatial biogeography of soil microbial abundance and function in 18 grasslands sites from two of the three regions, sampled at one time point. The second study analyzed spatial and temporal distributions of alpha- and beta-diversity of arbuscular mycorrhizal fungi in a low land-use intensity grassland with six sampling time points across one season. The third study investigated both legacy and short-term change effects of land-use intensity, soil physico-chemical properties, plant functional traits, and plant biomass properties on temporal changes in soil microbial abundance, function, and community composition in 150 grassland sites across three regions, with particular regard to direct and indirect land-use intensity effects. Although the three studies used different approaches and assessed different soil microbial properties, general patterns were detectable. Abiotic soil properties, namely pH, nitrogen content, texture, and bulk density played fundamental roles for spatial and temporal microbial biogeography. Since these factors were specific and unique for each investigated site, they formed the background based on which other processes occurred. In addition to abiotic soil properties, impacts of land-use intensity and plants were detected, though to various degrees in the three studies. Land-use intensity played a much smaller role than anticipated in the first and third study. No influence on the spatial distribution of soil microbial abundance and function could be detected in the first study. In the third study, short-term changes in and legacy effects of land-use intensity played a minor role with respect to short-term changes in soil microbial abundance, function, and community composition. Where detected, changes in land-use intensity had a direct and negative effect on soil microbial properties in structural equation modelling; i.e., increases in land-use intensity reduced, e.g., soil microbial enzyme activities, while legacy effects of land-use intensity were shown to act both directly and indirectly on soil microbial properties. Thereby indirect legacy effects were mediated via plant functional traits. Only one of the three studies detected minor plant diversity effects on soil microbial properties. Instead, functional properties of the plant communities, i.e., plant functional traits, biomass, and nutritional quality, were significantly related to spatial and temporal distributions of soil microorganisms. Finally, the findings of the three studies suggest that processes related to niche and neutral theory both drive spatial and temporal patterns of soil microbial properties at the investigated plot scale (up to 50 m × 50 m). This thesis concluded that in order to gain deeper insights into the complex functions and processes occurring in grassland ecosystems, a multidisciplinary approach investigating fundamental physico-chemical site characteristics, microbial soil properties, and plants is necessary. The results of the thesis suggest that focus be turned to functional properties of plant and microbial communities, as they are closely intermingled, provide more detailed insights into plant-microbe interactions, and are able to reflect effects of human impacts on grassland soils better than diversity measures.
  • Publication
    Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems
    (2019) Hallama, Moritz; Pekrun, Carola; Lambers, Hans; Kandeler, Ellen
    Background Phosphorus (P) is a limiting nutrient in many agroecosystems and costly fertilizer inputs can cause negative environmental impacts. Cover crops constitute a promising management option for sustainable intensification of agriculture. However, their interactions with the soil microbial community, which is a key driver of P cycling, and their effects on the following crop, have not yet been systematically assessed. Scope We conducted a meta-analysis of published field studies on cover crops and P cycling, focusing on plant-microbe interactions. Conclusions We describe several distinct, simultaneous mechanisms of P benefits for the main crop. Decomposition dynamics, governed by P concentration, are critical for the transfer of P from cover crop residues to the main crop. Cover crops may enhance the soil microbial community by providing a legacy of increased mycorrhizal abundance, microbial biomass P, and phosphatase activity. Cover crops are generally most effective in systems low in available P, and may access ‘unavailable’ P pools. However, their effects on P availability are difficult to detect by standard soil P tests, except for increases after the use of Lupinus sp. Agricultural management (i.e. cover crop species selection, tillage, fertilization) can improve cover crop effects. In summary, cover cropping has the potential to tighten nutrient cycling in agricultural systems under different conditions, increasing crop P nutrition and yield.
  • Publication
    Turbulent exchange of energy, water and carbon between crop canopies and the atmosphere : an evaluation of multi-year, multi-site eddy covariance data
    (2019) Eshonkulov, Ravshan; Streck, Thilo
    The increase of anthropogenic CO2 emissions and other greenhouse gases has raised concern about climate change. Climate change has manifold impacts on yield and yield quality, crop rotations, carbon and nitrogen cycling, water regime and agricultural production systems. To understand its consequences on environmental systems, measuring the matter and energy exchange at the land surface provides data to help validate and inform a wide range of process models. Such flux measurements at the land-surface provide an opportunity to test simulations of processes in the soil-plant-atmosphere continuum. Currently, such measurements are mainly based on the eddy covariance (EC) method, for the quality of which the energy balance closure (EBC) is a problem. The EBC significantly influences the calibration and validity of land-surface models, especially in regard to the energy and water balance at the Earth’s surface. The EBC quantifies the deviation between turbulent fluxes and available energy. It is crucial to obtain high-quality EC measurements to determine the reasons for the EBC. The research aims of this dissertation were: 1) to clarify the role of minor storage and flux terms in the energy balance, 2) to determine the possible reasons for the energy imbalance using a long-term dataset (2010-2017) from agricultural croplands, and 3) to investigate the effects of region, site, year and crop type on carbon fluxes and budgets. In the first study (Chapter 2) the contribution of minor storage terms to the EBC were investigated. I also determined the contribution of ground heat fluxes calculated by different methods. A harmonic analysis method was used to calculate ground heat fluxes from measurements of heat flux plates and soil temperature sensors. Soil heat storage and enthalpy change in the plant canopy were determined at different locations within the EC footprint. Considering minor storage terms improved the energy balance closure on average by 5.0 % in 2015 and by 6.8 % in 2016. The greatest energy balance closure improvement occurred in May of both study years. The dominant fraction of minor energy storage was energy uptake and release through photosynthesis and respiration. Additionally, the energy fluxes related to soil temperature change were also observed. The ground heat flux calculated by harmonic analysis from soil heat flux plates narrowed the EBC by 3 % compared to the calorimetric method. The results indicated that the typical correction approach to achieve energy balance closure, i.e. the Bowen-ratio method, overestimated the turbulent fluxes. The second study (Chapter 3) investigated the effects of crop type, site characteristics, wind directions, atmospheric conditions and footprint on the EBC. The long-term evaluation of EC measurements showed that, with the EC method, 25 % of the available energy could not be detected. Decreasing the flux footprint area increases the chance of a more homogeneous area. Homogeneity plays an important role in achieving a better energy balance closure. The synthesis of long-term EC data indicated that the sonic anemometer is very sensitive to orientation, not allowing accurate measurements from all wind directions. Discarding the measurements from wind directions 0° and 90° at EC4 improved the EBC from 80 to 84 %. In the third study, presented in Chapter 4, a long-term and multi-site experiment was evaluated to clarify the effects of site, year and region on the CO2 fluxes and budgets in agroecosystems. The net ecosystem exchange of CO2 fluxes – measured on six sites during eight years – was comprehensively examined. Winter rapeseed had the lowest CO2 uptake, cropping of silage maize resulted in the highest C losses. The management of harvest residues was the most effective means of controlling the C budgets. Comparing the CO2 fluxes processed with the recently developed ogive optimization method versus the conventional calculation showed that eliminating low-frequency contributions had a considerable effect. On average, the ogive optimization method delivered 6.9 % higher net ecosystem exchange rates than the conventional method. This dissertation provides new insights into how to obtain better measurements of matter and energy fluxes from EC measurements by a) considering storage terms otherwise neglected, b) using harmonic analysis for calculating ground heat fluxes, c) discarding fluxes from behind the anemometer and d) applying the ogive optimization method.
  • Publication
    The role of Phragmites australis in carbon, water and energy fluxes from a fen in southwest Germany
    (2019) van den Berg, Merit; Streck, Thilo
    The global carbon emission from peat soils adds up to 0.1 Gt-C per year. Under anaerobic conditions, organic material is decomposed to methane (CH4). Over a 100-year cycle, methane is a 28 times stronger greenhouse gas than carbon dioxide and is an important factor for climate change. Therefore, there is a great interest to get a better understanding of the carbon flows in peatlands. Phragmites peatlands are particularly interesting due to the global abundance of this wetland plant (Phragmites australis, common reed) and the highly efficient internal gas transport mechanism. This is a humidity-induced convective flow (HIC) to transport oxygen (O2) to the roots and rhizomes, with the effect that simultaneously soil gases (CH4 and CO2) can be transported to the atmosphere via the plant. Thereby, Phragmites is expected to have a high evapotranspiration (ET) rate due to the large leaf area, open water habitat and high aerodynamic roughness. This ET could highly influence the hydrology of the system. Because he accumulation of organic material occurs because of limiting oxygen levels, hydrological processes are fundamental in the development of peatlands. The research aims were: 1) to clarify the effect of plant-mediated gas transport on CH4 emission, 2) to find out whether Phragmites peatlands are a net source or sink of greenhouse gases, and 3) to evaluate ET in perspective of surface energy partitioning and compare results with FAO’s Penman-Monteith equation. CO2, CH4 and latent and sensible energy fluxes were measured with the eddy covariance (EC) technique within a Phragmites-dominated fen in southwest Germany in 2013, 2014 and 2016. In 2016, a field experiment was set up to quantify the contribution of plant-mediated CH4 transport to the overall CH4 flux and how it influences ebullition. One year of EC flux data (March 2013–February 2014) shows very clear diurnal and seasonal patterns for both CO2 and CH4. The diurnal pattern of CH4 fluxes was only visible when living green reed was present. This diurnal cycle had the highest correlation with global radiation, which suggests a high influence of HIC on CH4 emission. But if the cause were HIC, relative humidity should correlate stronger with CH4 flux. Therefore, we conclude that in addition to HIC at least one other mechanism must have been involved in the creation of the convective flow within the Phragmites plants. We quantified the influence of pressurized flow within Phragmites on total CH4 emission in a field experiment (see chapter 3) and found between 23% and 45% lower total CH4 flux when pressurized flow was excluded (by cutting or cutting and sealing the reed). The gas transport pathways from the soil to the atmosphere changed as well. Relative contribution of ebullition to the total flux increased from 2% in intact Phragmites to 24-37% in cut vegetation. This increase in ebullition in cut vegetation, obviously, did not compensate the excluded pathway via the pressurized air flow at our site. It also means that the effect of CH4 bypassing the oxic water layer by plant transport on CH4 emission is much larger than the effect of O2 transport through the plants on CH4 oxidation and production in the rhizosphere. Overall, the fen was a sink for carbon and greenhouse gases in the measured year, with a total carbon uptake of 221 g C m-2 yr-1 (26% of the total assimilated carbon). The net uptake of greenhouse gases was 52 g CO2 eq.m-2 yr-1, which is obtained from an uptake of CO2 of 894 g CO2 m-2 yr-1 and a release of CH4 of 842 g CO2 eq.m-2 yr-1. Compared to the long term uptake of carbon by northern peatlands (20–50 g C m-2 yr-1) 212 g C yr-1 is therefore very high. One year of measurements is not enough to draw hard conclusions about the climate change impact of this peatland. The measured ET at our site was lower than other Phragmites wetlands in temperate regions. ET was half the amount of precipitation (see chapter 4). Therefore, the risk of the wetland to dry out is not realistic. ET was especially low when there was little plant activity (May and October). Then, the dominant turbulent energy flux was sensible heat not latent heat. This can be explained by the high density of dead reed in these months. the reed heats up causing a high sensible heat flux. Evaporation was low due to the shading of the water layer below the canopy and low wind velocities near the surface. FAO’s Penman-Monteith equation was a good estimator of measured ET with crop factors from the regression model of Zhou and Zhou (2009) (see chapter 4). Especially the day-to-day variation was modeled very well. Their model had air temperature, relative humidity and net radiation as input variables. This is likely related to stomatal resistance, which depends on the same variables. Therefore, the model of Zhou and Zhou (2009) is an interesting tool for calculating daily crop factors and it is probably robust enough to be used also in different regions.
  • Publication
    Seedball technology development for subsistence-oriented pearl millet production systems in Sahelian West Africa
    (2019) Nwankwo, Charles Ikenna; Herrmann, Ludger
    The objectives of this study were to review the potential of the local material-based innovation – i.e. the seedball technology, at enhancing pearl millet seedlings establishment under Sahelian conditions, identify its potential constraints as well as applicability, chemically and mechanically optimize the seedball, and validate its performance under Sahelian field conditions. Seedball is a local seed pelleting techniques that aims at improving seedlings performance and to stabilize yield. First, the potential local materials such as sand, loam, wood ash, gum arabic, termite soil, charcoal as well as animal dung as the seedball components were identified and reviewed. These materials were selected based on their affordability to the local farmers. Potential constraints to seedball applicability as well as adoption in the Sahel were evaluated, and options for adaptation were discussed with the farmers. Afterwards, mechanical and chemical optimization of the seedball technology in several greenhouse experiments were conducted, followed by a germination test of the optimized seedball in the Sahelian field. Lastly, the mechanism of pearl millet seedlings root and shoot enhancement was investigated using micro-suction cup and computer tomography. Our evaluation showed that the materials needed for seedball production are locally available at affordable costs. The seedball technology totally conforms to the agronomic management practices in the African Sahel. In addition, the socio-economic status as well as cultural practices seemed not to reduce the chances of seedball technology adoption in this region. Our greenhouse studies showed that the seedball base dough, from which about ten 2 cm diameter-sized seedballs can be produced, is derived from the combination of 80 g sand + 50 g loam + 25 ml water. Either 1 g mineral fertilizer or 3 g wood ash can be added as nutrient additive to enhance early biomass of pearl millet seedlings. With respect to nutrient additives, ammonium fertilizers and urea hampered seedlings emergence. Wood ash amended (Sball+3gAsh) and mineral fertilizer-amended seedballs (Sball+1gNPK)enhanced shoot biomass by 60 % and 75-160 %, root biomass by 36 % and 94 %, and root length density of pearl millet by 14 % and 28 %, respectively, relative to the control. Again, the mineral fertilizer amended seedball in particular enhanced root dry matter by 227 %, compared to the control. Although the shoot nutrient content was not clearly enhanced by the seedball, nutrient extraction, calculated as the product of biomass yield and nutrient content, was higher in the nutrient-amended seedballs, compared to the conventional sowing. In Senegal, optimized seedballs showed over 95 % emergence in an on-station trial, indicating its viability in the Sahel region. With respect to seedball enhancement mechanism, the mineral fertilizer-amended seedball in particular promoted root growth within the vicinity of the seedball as early as 7 days after planting. The analysis of the sampled soil solution revealed that P as well as other cations and anions, observed through EC measurement, were released by the seedball in direct proximity of the seedball. Most likely, the nutrient release by the seedball triggered the observed fine root growth and overall higher root biomass of pearl millet seedlings. However, due to nutrient depletion in the root zone, nutrient supplementation was needed after three weeks after sowing to further promote growth of the well-established seedlings. At the Sahelian field, where seedlings enhancement is decisive for higher panicle yield in pearl millet, nutrient amended seedballs can potentially increase panicle yield under subsistence production. The seedball technology is cheap, and seems to have favorable conditions for adoption in the Sahel, coupled with its minimal seed usage and simple sowing on the sandy soil. A recommendation will be to conduct long-term, on-farm as well as on-station field trials, testing the seedball technology under different seasonal weather conditions. Pearl millet and sorghum are the major Sahelian staple crops. Fonio (Digitaria spp) is often neglected despite its high nutritional values. It is, therefore, recommended to test the seedball technology on the other fine-grained cereal crops.
  • Publication
    Microbial regulation of soil organic matter decomposition at the regional scale
    (2018) Ali, Rana Shahbaz; Kandeler, Ellen
    The fate of soil organic carbon (SOC) is one of the greatest uncertainties in predicting future climate. Soil microorganisms, as primary decomposers of SOC, control C storage in terrestrial ecosystems by mediating feedbacks to climate change. Even small changes in microbial SOC decomposition rates at the regional scale have the potential to alter land-atmospheric feedbacks at the global scale. Despite their critical role, the ways in which soil microorganisms may change their abundances and functions in response to the climate change drivers of soil temperature and moisture is unclear. Additionally, most existing C models do not consider soil microorganisms explicitly as drivers of decomposition, one consequence of which is large variability in predicted SOC stock projections. This demonstrates the need for a better mechanistic understanding of microbial SOC decomposition at large scales. This thesis was designed to clarify the role of microbial SOC decomposition dynamics in response to climate change factors in two geographically distinct areas and land-use types. The hypothesis was that microbial communities would be adapted to climatic and edaphic conditions specific to each area and to the SOC organic quality in each land-use and would therefore exhibit distinct responses to soil temperature and moisture variations. Three studies were performed to address the goals of this thesis. The first study aimed to clarify temporal patterns of degradation in C pools that varied in complexity by modelling in situ potentials of microbially produced extracellular enzymes. Temperature and moisture sensitivity patterns of C cycling enzymes were followed over a period of thirteen months. The second study investigated group-specific temperature responses of bacteria and fungi to substrate quality variations through an additional incubation experiment. Here, complex environments were mimicked in order to determine the dependence of microbial responses not only on environmental conditions, but also under conditions of inter- and intra-specific community competition. Changes in microbial community composition, abundance, and function were determined at coarse (phospholipid fatty acid – PLFA, ergosterol) and relatively fine resolutions (16S rRNA, taxa-specific quantitative PCR, fungal ITS fragment). A third study investigated 1) the spatial variability of temperature sensitivity of microbial processes, and 2) the scale-specificity and relative significance of their biotic and physicochemical controls at landscape (two individual areas, each ca. 27 km2) and regional scales (pooled data of two areas). Strong seasonal dependency was observed in the temperature sensitivities (Q10) of hydrolytic and oxidative enzymes, whereas moisture sensitivity of β-glucosidase activities remained stable over the year. The range of measured enzyme Q10 values was similar irrespective of spatial scale, indicating a consistency of temperature sensitivities of these enzymes at large scales. Enzymes catalyzing the recalcitrant SOC pool exhibited higher temperature sensitivities than enzymes catalyzing the labile pool; because the recalcitrant C pool is relatively large, this could be important for understanding SOC sensitivity to predicted global warming. Response functions were used to model temperature-based and temperature and moisture-based in situ enzyme potentials to characterize seasonal variations in SOC decomposition. In situ enzyme potential explained measured soil respiration fluxes more efficiently than the commonly used temperature-respiration function, supporting the validity of our chosen modelling approach. As shown in the incubation experiment, increasing temperature stimulated respiration but decreased the total biomass of bacteria and fungi irrespective of substrate complexity, indicating strong stress responses by both over short time scales. This response did not differ between study areas and land-uses, indicating a dominant role of temperature and substrate quality in controlling microbial SOC decomposition. Temperature strongly influenced the responses of microbial groups exhibiting different life strategies under varying substrate quality availability; with soil warming, the abundance of oligotrophs (fungi and gram-positive bacteria) decreased, whereas copiotrophs (gram-negative) increased under labile C substrate conditions. Such an interactive effect of soil temperature and substrate quality was also visible at the taxon level, where copiotrophic bacteria were associated with labile C substrates and oligotrophic bacteria with recalcitrant substrates. Which physicochemical and biological factors might explain the observed alterations in microbial communities and their functions in response to climate change drivers at the regional scale was investigated in the third study. Here, it was shown that the soil C:N ratio exerted scale-dependent control over soil basal respiration, whereas microbial biomass explained soil basal respiration independent of spatial scale. Factors explaining the temperature sensitivity of soil respiration also differed by spatial scale; extractable organic C and soil pH were important only at the landscape scale, whereas soil texture as a control was independent of spatial scale. In conclusion, this thesis provides an enhanced understanding of the response of microbial C dynamics to climate change at large scales by combining field measurements with innovative laboratory assays and modelling tools. Component specific degradation rates of SOC using extracellular enzyme measurements as a proxy, group-specific temperature sensitivities of microbial key players, and the demonstrated scale-specificity of factors controlling microbial processes could potentially improve the predictive power of currently available C models at regional scale.