Institut für Tropische Agrarwissenschaften (Hans-Ruthenberg-Institut)
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/21
Browse
Browsing Institut für Tropische Agrarwissenschaften (Hans-Ruthenberg-Institut) by Subject "Africa"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Livestock phenomics and genetic evaluation approaches in Africa: current state and future perspectives(2023) Houaga, Isidore; Mrode, Raphael; Opoola, Oluyinka; Chagunda, Mizeck G. G.; Mwai, Okeyo A.; Rege, John E. O.; Olori, Victor E.; Nash, Oyekanmi; Banga, Cuthbert B.; Okeno, Tobias O.; Djikeng, AppolinaireThe African livestock sector plays a key role in improving the livelihoods of people through the supply of food, improved nutrition and consequently health. However, its impact on the economy of the people and contribution to national GDP is highly variable and generally below its potential. This study was conducted to assess the current state of livestock phenomics and genetic evaluation methods being used across the continent, the main challenges, and to demonstrate the effects of various genetic models on the accuracy and rate of genetic gain that could be achieved. An online survey of livestock experts, academics, scientists, national focal points for animal genetic resources, policymakers, extension agents and animal breeding industry was conducted in 38 African countries. The results revealed 1) limited national livestock identification and data recording systems, 2) limited data on livestock production and health traits and genomic information, 3) mass selection was the common method used for genetic improvement with very limited application of genetic and genomic-based selection and evaluation, 4) limited human capacity, infrastructure, and funding for livestock genetic improvement programmes, as well as enabling animal breeding policies. A joint genetic evaluation of Holstein-Friesian using pooled data from Kenya and South Africa was piloted. The pilot analysis yielded higher accuracy of prediction of breeding values, pointing to possibility of higher genetic gains that could be achieved and demonstrating the potential power of multi-country evaluations: Kenya benefited on the 305-days milk yield and the age at first calving and South Africa on the age at first calving and the first calving interval. The findings from this study will help in developing harmonized protocols for animal identification, livestock data recording, and genetic evaluations (both national and across-countries) as well as in designing subsequent capacity building and training programmes for animal breeders and livestock farmers in Africa. National governments need to put in place enabling policies, the necessary infrastructure and funding for national and across country collaborations for a joint genetic evaluation which will revolutionize the livestock genetic improvement in Africa.Publication Perceived effects of farm tractors in four African countries, highlighted by participatory impact diagrams(2020) Daum, Thomas; Adegbola, Ygué Patrice; Kamau, Geoffrey; Kergna, Alpha Oumar; Daudu, Christogonus; Zossou, Roch Cedrique; Crinot, Géraud Fabrice; Houssou, Paul; Mose, Lawrence; Ndirpaya, Yarama; Wahab, A. A.; Kirui, Oliver; Oluwole, Fatunbi AbiodunAgricultural mechanization is on the rise in Africa. A widespread replacement of manual labor and animal traction will change the face of African agriculture. Despite this potentially transformative role, only a few studies have looked at the effects of mechanization empirically, mostly focusing on yields and labor alone. This is the first paper that explores perceived agronomic, environmental, and socioeconomic effects together, thereby revealing linkages and trade-offs, some of which have been hitherto unknown. Data were collected using a novel data collection method called “participatory impact diagrams” in four countries: Benin, Kenya, Nigeria, and Mali. In 129 gendered focus group discussions, 1330 respondents from 87 villages shared their perceptions on the positive and negative effects of agricultural mechanization, and developed causal impact chains. The results suggest that mechanization is likely to have more far-reaching agronomic, environmental, and socioeconomic consequences than commonly assumed. Most perceived effects were positive, suggesting that mechanization can help to reduce poverty and enhance food security but other effects were negative such as deforestation, soil erosion, land-use conflicts, and gender inequalities. Accompanying research and policy efforts, which reflect variations in local agro-ecological and socioeconomic conditions, are needed to ensure that mechanization contributes to an African agricultural transformation that is sustainable from a social, economic, and environmental perspective.