Institut für Tropische Agrarwissenschaften (Hans-Ruthenberg-Institut)
Permanent URI for this collection
Browse
Recent Submissions
Publication From a documented past of the Jersey breed in Africa to a profit index linked future(2022) Opoola, Oluyinka; Shumbusho, Felicien; Hambrook, David; Thomson, Sam; Dai, Harvey; Chagunda, Mizeck G. G.; Capper, Jude L.; Moran, Dominic; Mrode, Raphael; Djikeng, AppolinaireThe paper reports on the prevalence and performance of the Jersey cattle breed in Africa, highlighting its geographic distribution and describing the reported performance and other related characteristics from the early 1900s to the present day. The review examines the contribution of Jersey cattle in increasing the volume and efficiency of milk production across the continent. Data relating to the Jersey cattle breed has been reported in more than 30 African countries based on available material published between 1964 and 2020. A key encompassing parameter of any reference was a well-described consideration of the Jersey cattle breed (as pure or crossbred with other exotic and/or indigenous breeds) with reported performance within a variety of production systems and agro-ecologies in Africa. The main focus was on breed and performance parameters, breed types, percentage of different breed types in specific environments, reproduction method and fertility; survival and longevity; disease incidence; and production efficiency metrics such as: feed efficiency (milk unit per dry matter intake, DMI) and milk yield (MY) per unit of body weight (BW). The main performance descriptors identified were based on observations on resilience under both abiotic (heat, nutrition) and biotic (incidences of pests and diseases) stressors, milk production, BW, nutrition and utilisation of feed resources. From the literature consulted, we grouped key dairy cattle performance characteristics reported in each country under the following areas to aid comparisons; a. Milk production (Milk nutrient value, daily MY, lifetime MY and annual MY); b. Fertility traits and AFC; c. Survival and longevity, d. Production efficiency (Feed efficiency, milk per unit BW and milk per unit DMI and e. Disease incidences. Results of the review showed that the smaller stature and lower maintenance nutrient requirements of the Jersey breed means that it is better suited to tolerate the tropical production conditions in the African small-scale dairy farming sector. Detailed analyses on MY and survival showed that Jersey crosses with exotic and African indigenous breeds performed better than purebred cattle with strong evidence to support the suitability of the Jersey breed in crossbreeding with indigenous breeds for use in smallholder production systems.Publication Genetic and phenotypic correlations among feed efficiency, immune and production traits in indigenous chicken of Kenya(2023) Miyumo, Sophie A.; Wasike, Chrilukovian B.; Ilatsia, Evans D.; Bennewitz, Jorn; Chagunda, Mizeck G. G.This study aimed at estimating genetic and phenotypic relationships among feed efficiency, immune and production traits measured pre- (9–20 weeks of age) and post- (12 weeks from on-set of lay) maturity. Production traits were average daily gain (ADG) and average daily feed-intake (ADFI1) in the pre-maturity period and age at first egg (AFE), average daily feed-intake (ADFI2) and average daily egg mass (EM) in the post-maturity period. Feed efficiency comprised of residual feed intake (RFI) estimated in both periods. Natural antibodies binding to keyhole limpet hemocyanin (KLH-IgM) and specific antibodies binding to Newcastle disease virus (NDV-IgG) measured at 16 and 28 weeks of age represented immune traits pre- and post-maturity, respectively. In the growing period, 1,820 records on ADG, KLH-IgM and NDV-IgG, and 1,559 records on ADFI1 and RFI were available for analyses. In the laying period, 1,340 records on AFE, EM, KLH-IgM and NDV-IgG, and 1,288 records on ADFI2 and RFI were used in the analyses. Bi-variate animal mixed model was fitted to estimate (co)variance components, heritability and correlations among the traits. The model constituted sex, population, generation, line and genotype as fixed effects, and animal and residual effects as random variables. During the growing period, moderate to high heritability (0.36–0.68) was estimated for the production traits and RFI while the antibody traits had low (0.10–0.22) heritability estimates. Post-maturity, the production traits and RFI were moderately (0.30–0.37) heritable while moderate to high (0.25–0.41) heritability was estimated for the antibody traits. Genetic correlations between feed efficiency and production traits in both periods showed that RFI had negative genetic correlations with ADG (−0.47) and EM (−0.56) but was positively correlated with ADFI1 (0.60), ADFI2 (0.74) and AFE (0.35). Among immune and production traits, KLH-IgM and NDV-IgG had negative genetic correlations with ADG (−0.22; −0.56), AFE (−0.39; −0.42) and EM (−0.35; −0.16) but were positively correlated with ADFI1 (0.41; 0.34) and ADFI2 (0.47; 0.52). Genetic correlations between RFI with KLH-IgM (0.62; 0.33) and NDV-IgG (0.58; 0.50) were positive in both production periods. Feed intake, RFI and antibody traits measured in both production periods were positively correlated with estimates ranging from 0.48 to 0.82. Results from this study indicate selection possibilities to improve production, feed efficiency and immune-competence in indigenous chicken. The genetic correlations suggest that improved feed efficiency would be associated with high growth rates, early maturing chicken, high egg mass and reduced feed intake. In contrast, improved general (KLH-IgM) and specific (NDV-IgG) immunity would result in lower growth rates and egg mass but associated with early sexual maturation and high feed intake. Unfavorable genetic correlations between feed efficiency and immune traits imply that chicken of higher productivity and antibody levels will consume more feed to support both functions. These associations indicate that selective breeding for feed efficiency and immune-competence may have genetic consequences on production traits and should therefore be accounted for in indigenous chicken improvement programsPublication Combined effects of drought and soil fertility on the synthesis of vitamins in green leafy vegetables(2023) Park, Taewan; Fischer, Sahrah; Lambert, Christine; Hilger, Thomas; Jordan, Irmgard; Cadisch, GeorgGreen leafy vegetables, such as Vigna unguiculata, Brassica oleraceae, and Solanum scabrum, are important sources of vitamins A, B1, and C. Although vitamin deficiencies considerably affect human health, not much is known about the effects of changing soil and climate conditions on vegetable vitamin concentrations. The effects of high or low soil fertility and three drought intensities (75%, 50%, and 25% pot capacity) on three plant species were analysed (n = 48 pots) in a greenhouse trial. The fresh yield was reduced in all the vegetables as a result of lower soil fertility during a severe drought. The vitamin concentrations increased with increasing drought stress in some species. Regardless, the total vitamin yields showed a net decrease due to the significant biomass loss. Changes in vitamin concentrations as a result of a degrading environment and increasing climate change events are an important factor to be considered for food composition calculations and nutrient balances, particularly due to the consequences on human health, and should therefore be considered in agricultural trials.Publication Role of Bacillus spp. plant growth promoting properties in mitigating biotic and abiotic stresses in lowland rice (Oryza sativa L.)(2023) Weinand, Tanja; El-Hasan, Abbas; Asch, FolkardThe ability of microorganisms to promote plant growth and mitigate abiotic and biotic stresses makes them an interesting tool for sustainable agriculture. Numerous studies aim to identify new, promising bacteria isolates. Traditional culture-based methods, which focus on selecting microorganisms with plant-growth-promoting traits, such as hormone production, nutrient solubilization, and antifungal properties, are widely used. This study aims to investigate the role of plant-growth-promoting properties in bacteria-mediated stress mitigation and the suitability of traditional culture-based methods as a screening tool for the identification of beneficial bacteria. To this end, we tested three endophytic Bacillus isolates, which have previously been shown to affect tolerance against iron toxicity in lowland rice, (a) for their effect on the resistance against brown spot disease, and (b) for plant-growth-promoting traits using common culture-based methods. Both B. pumilus isolates inhibited fungal growth in vitro and reduced brown spot disease in two of three rice cultivars in planta, although they tested negative for all plant-growth-promoting traits. While B. megaterium was negative for ACC deaminase activity and nutrient solubilization, it exhibited auxin production. Nevertheless, B. megaterium did not suppress brown spot disease in any of the three rice cultivars. This study shows that bacteria do not necessarily have to possess classical plant-growth-promoting properties in order to be beneficial to plants, and it emphasizes the limitation of common culture-based methods in effectively identifying beneficial bacteria. Moreover, our results highlight the significance of the interaction between bacteria and plant cultivars in determining the beneficial effects of Bacillus spp. on plants under biotic or abiotic stresses.Publication Genotypic responses of rice to alternate wetting and drying irrigation in the Mekong Delta(2023) Johnson, Kristian; Vo, Thuong Ti Bach; Van Nha, Duong; Asch, FolkardIn the Vietnamese Mekong Delta (VMD), alternate wetting and drying (AWD) in rice (Oryza sativa L.) production during the dry season has the potential to reduce greenhouse gas emission and freshwater use. However, its effect on yield compared with continuously flooded systems can vary. To evaluate the effect of AWD on yield and yield‐forming processes on genotypes commonly grown in the VMD, field trials over two consecutive dry seasons were conducted at the Loc Troi Group's agricultural research station in the VMD. We observed a significant yield reduction, 7% on average, across all varieties grown under AWD. Analysis of yield components showed that under AWD, genotypes on average produced more tillers, but fewer spikelets, suffered greater spikelet sterility and had a lower 1000 grain weight. The size of this effect differed between dry seasons. Accordingly, we were able to identify and characterize genotypes better suited to AWD. We also could relate shifts in sink‐source relationships to the overlap of drying events and key phenological stages other than flowering. Our study shows how successful implementation of AWD requires adaptation to both environment and genotype.Publication Salinity effects on the activities of ROS scavenging enzymes in leaves of two sweet potato clones(2023) Mondal, Shimul; Burgert, Susane; Asch, Julia; Rahaman, Ebna Habib Md Shofiur; Asch, FolkardSweet potato production, particularly in coastal areas is often prone to salinity. Salt‐tolerant clones will be needed to maintain production, but to date, little is known about salt tolerance traits in sweet potato. Salt stress may result in excessive uptake of unwanted ions into plant tissues leading to the formation of reactive oxygen species (ROS), which in turn may destroy membranes and reduce photosynthesis and growth. Antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), glutathione reductase (GR) and ascorbate peroxidase (APX) scavenge ROS and early changes in the activities of such enzymes could be used to identify salinity tolerant genotypes. Therefore, cuttings of two contrasting cultivars of sweet potato, BARI SP 8 (tolerant) and BARI SP 4 (sensitive) were greenhouse‐cultivated in nutrient solution for 21 days and then exposed to 100 mmol NaCl for 7 days. Three, five and seven days after salt application the youngest leaves were sampled individually and enzyme activities, potassium (K) and sodium (Na) concentrations, and SPAD (as a proxy for chlorophyll content) were determined. In both varieties leaf growth was not affected by salinity and young leaves grown under salinity had higher SPAD values than older leaves. Na concentration increased over time, particularly in earlier and in older leaves, whereas K was reduced in younger leaves. In general, enzyme activities were strongly affected by leaf age and leaf position. SOD and APX showed varietal but no salinity effects, CAT increased under salinity in both varieties, whereas POX was strongly reduced and GR was strongly increased under salinity in BARI SP 8 with no effect in BARI SP 4. Enzyme activities were not correlated to leaf Na, neither in relation to leaf age, nor leaf number or duration of salt stress in both varieties. However, varietal differences were observed regarding leaf K. Activities of SOD were highly positive and of CAT highly negatively correlated with leaf K under salinity in BARI SP 8 but not in BARI SP 4, whereas activities of GR and POX were strongly positively correlated with leaf K in BARI SP 4 under salinity but not in BARI SP 8. We conclude that potassium may have a strong regulating role on leaf stress levels and therefore on the activities of antioxidant enzymes. Varieties may differ in their tolerance strategy and we have shown that salinity does not generally increase levels of ROS‐scavenging enzymes in sweet potato leaves under salt stress. Confounding factors such as leaf age and leaf position as well as maintaining high leaf level K concentrations need to be considered when evaluating metabolic traits for salinity tolerance traits.Publication Varietal effects on methane intensity of paddy fields under different irrigation management(2023) Vo, Thi Bach Thuong; Johnson, Kristian; Wassmann, Reiner; Sander, Bjoern Ole; Asch, FolkardAlternate wetting and drying irrigation (AWD) has been shown to decrease water use and trace gas emissions from paddy fields. Whereas genotypic water use shows little variation, it has been shown that rice varieties differ in the magnitude of their methane emissions. Management and variety‐related emission factors have been proposed for modelling the impact of paddy production on climate change; however, the magnitude of a potential reduction in greenhouse gas emissions by changing varieties has not yet been fully assessed. AWD has been shown to affect genotypic yields and high‐yielding varieties suffer the greatest loss when grown under AWD. The highest yielding varieties may not have the highest methane emissions; thus, a potential yield loss could be compensated by a larger reduction in methane emissions. However, AWD can only be implemented under full control of irrigation water, leaving the rainy seasons with little scope to reduce methane emissions from paddy fields. Employing low‐emitting varieties during the rainy season may be an option to reduce methane emissions but may compromise farmers’ income if such varieties perform less well than the current standard. Methane emissions and rice yields were determined in field trials over two consecutive winter/spring seasons with continuously flooded and AWD irrigation treatments for 20 lowland rice varieties in the Mekong Delta of Vietnam. Based on the results, this paper investigates the magnitude of methane savings through varietal choice for both AWD and continuous flooding in relation to genotypic yields and explores potential options for compensating farmers’ mitigation efforts.Publication Varietal effects on Greenhouse Gas emissions from rice production systems under different water management in the Vietnamese Mekong Delta(2023) Vo, Thi Bach Thuong; Johnson, Kristian; Wassmann, Reiner; Sander, Bjoern Ole; Asch, FolkardRice production accounts for 15% of the national Greenhouse Gas (GHG) emissions and Vietnam aims at reducing emissions from rice production by focusing on changing farming practices. However, the potential for mitigation through the selection of different rice varieties is still poorly understood. A two‐year field screening of 20 rice varieties under continuous flooding (CF) and alternate wetting and drying (AWD) irrigation was conducted in the Vietnamese Mekong Delta (VMD), Vietnam, employing the closed chamber method for assessing GHG emissions. The results confirmed that varietal variation was the largest for methane (CH4) emissions under CF. Across the varietal spectrum, CH4 emissions were more important than nitrous oxide (N2O) (accounts for less than 2% of the CO2e) with the lowest emitting variety showing 243 kg CH4 ha−1 and the highest emitting variety showing 398 kg CH4 ha−1 emissions as compared to 0.07 kg N2O ha−1 and 0.76 kg N2O ha−1 emissions, respectively. Under AWD, CH4 emissions were generally strongly reduced with the varietal effect being of minor importance. Compared with IPCC default values, the data set from the two seasons yielded higher Emission Factors (EFs) under CF (2.92 and 3.00 kg ha−1 day−1) as well as lower Scaling Factors (SFs) of AWD (0.41 and 0.38). In the context of future mitigation programs in the VMD, the dry season allows good control of the water table, so varietal selection could maximize the mitigation effect of AWD that is either newly introduced or practised in some locations already. In the wet seasons, AWD may be difficult to implement whereas other mitigation options could be implemented such as selecting low‐emitting cultivars.Publication Suitability of the stress severity index combined with remote‐sensing data as a tool to evaluate drought resistance traits in potato(2023) Hoelle, Julia; Asch, Folkard; Khan, Awais; Bonierbale, MeridethPotato is a drought susceptible crop and even short drought spells reduce tuber yields notably. In an earlier study we developed a stress severity index (SSI) based on the development stage of a genotype at the onset of drought and the soil water deficit based on soil water tension. Here, we test the suitability of the SSI combined with remotely sensed data as a screening tool to select drought‐tolerant potato genotypes. Normalized difference vegetation index (NDVI) and the photochemical reflectance index (PRI) were obtained from reflectance measurements and thermography. Temperature data from the thermography allow using the difference between leaf and air temperature (∆T) to estimate the transpirational cooling of the leaves. Via cluster analysis including SSI, tuber yield reduction under drought, NDVI, PRI and thermography, three groups were distinguished: 1. SSI < 1000 with fast decreasing NDVI, PRI and ∆T, 2. SSI 1000–2000 with almost constant NDVI and ∆T and 3. SSI > 2000 described by small changes of NDVI, PRI and temperature deficit. For SSI < 1000, ∆T, PRI and NDVI showed to be good indicators of genotypic performance under drought. Potential strategies for drought resistance in potato detectable through remote sensing are discussed.Publication Ion uptake and distribution in sweet potato genotypes subjected to salt stress is not driven by transpiration(2023) Mondal, Shimul; Rahaman, Ebna Habib Md Shofiur; Asch, FolkardPotassium is taken up actively by the plant, whereas sodium is often either competing for the same uptake mechanisms or uptake and distribution are driven by the transpirational volume flow in the shoots of plants grown under salinity. Reducing transpiration rate is regarded as an adaptation mechanism to reduce leaf tissue salt load. In combination with a high K uptake, plants may be able to maintain growth and are, thus, seen as salt‐tolerant. Little is known about these mechanisms in sweet potato (Ipomoea batatas L.). Therefore, cuttings of two sweet potato genotypes contrasting in salinity tolerance (CIP 188002.1, tolerant; CIP 189151.8, sensitive) were subjected to 0 and 50 mM NaCl root zone salinity in a hydroponic system and grown under low (0.76 kPa) and high (2.27 kPa) vapour pressure deficit (VPD) to create differences in transpiration. After 18 days of initial hydroponic growth, NaCl was added for another 33 days. Cumulative plant water loss and total uptake of Na, K and Cl were determined for all plants and treatments. Transpirational water loss was twice as high under high VPD as compared to low VPD conditions, but genotypic Na and Cl accumulation remained almost the same. In contrast to plants subjected to salt stress under low VPD conditions, genotypes under high VPD conditions differed significantly in transpiration. However, in both genotypes transpirational water loss from individual leaves and Na or Cl accumulation were not correlated, under high VPD younger leaves of CIP 188002.1 (tolerant) accumulated more than twice as much potassium than in CIP 189151.8 (sensitive). The distribution of the three ions across leaf positions and within one leaf position between petiole and leaf blade differed strongly between the two genotypes. Tolerant CIP 188002.1 accumulated up to five times more sodium and potassium in the leaf petioles in the middle‐aged and young leaf positions than in the leaf blade, whereas in sensitive CIP 189151.8 neither ion was preferentially accumulated in the petioles. This was independent of salinity treatment and VPD conditions. In contrast, hyperaccumulation of Cl in petioles only occurred under high VPD conditions in the petioles of the tolerant genotype, but not under low VPD conditions, indicating a VPD sensitivity for Cl distribution in sweet potato. While we conclude that transpirational volume flow is not a main driving force for Na and Cl uptake and distribution within the plant, we discuss potential pathways leading to the hyperaccumulation of sodium and potassium in the leaf petioles of the tolerant genotype. We suggest studies on HKT transporter activities in the petioles as an object of further studies in sweet potato.Publication Drought affects the synchrony of aboveground and belowground phenology in tropical potato(2023) Hoelle, Julia; Khan, Awais; Asch, FolkardThe literature describes the belowground and aboveground phenology of potato to be linearly related. Bud formation is synchronous with tuber initiation and flowering with tuber filling. Many agronomic and breeding studies on potato use non‐destructive aboveground phenology to assess belowground development. No information is currently available on the influence of water deficit on the synchrony of above‐ and belowground development in potato. Five contrasting potato genotypes were subjected to four irrigation treatments on two different soil types. The irrigation treatments were as follows: fully watered, early drought, intermediate drought, and late drought. In 5‐day intervals after withholding water, detailed belowground and aboveground development was recorded. Results showed that the synchrony between aboveground and belowground development is strongly influenced by both water deficit and development stage at drought initiation. Under early drought, the aboveground development was hastened and belowground development was delayed. The opposite was found in later development stages. The earlier the drought was initiated, the longer the tuber filling phase was, while the bulking phase was shortened. We concluded that under terminal drought conditions aboveground development and belowground development need to be evaluated separately and cannot follow the standard evaluation system that uses aboveground phenology as a proxy for tuber formation belowground development rates.Publication Traits contributing to salinity tolerance in rice genotypes from the Mekong Delta(2023) Johnson, Kristian; Vu, Duy Hoang; Asch, FolkardIncreasing sea level rise and subsequent salinization in mega deltas, such as the Vietnamese Mekong Delta (VMD), pose a risk to rice (Oryza sativa L.) production during the dry season. This study investigated the salinity resistance of a selection of common rice genotypes from the VMD along with an international check, IR64. The 20 rice varieties were grown hydroponically for 5 weeks in a greenhouse and then exposed to three levels of NaCl concentration (0 mM, 50 mM and 100 mM) over a period of 2 weeks to determine their susceptibility to salinity. Rice plants were scored and SPAD (leaf greenness) and PRI (photochemical reflectance index) were measured on the youngest fully developed leaf on the main tiller. After harvesting the 7‐week‐old plants, biomass and ion (K+, Cl−, Na+) content were determined by organ across all tillers. Averaged over all varieties, both at 50 mM and 100 mM NaCl, there was a significant reduction in plant biomass, 39% and 52% respectively. However, the effect of the NaCl treatments and the uptake of Cl− and Na+ were significantly different between varieties (p < .0001). Using biomass and ion content as part of a multivariate analysis, varieties were classified according to their susceptibility to salinity and their predominant strategy towards managing ion accumulation. The grouped varieties were further characterized by patterns in Cl− and Na+ partitioning and nondestructive parameters such as SPAD and PRI.Publication Evaluating topsoil salinity via geophysical methods in rice production systems in the Vietnam Mekong Delta(2023) Nguyen, Van Hong; Germer, Jörn; Asch, FolkardThe Vietnam Mekong Delta (VMD) is threatened by increasing saltwater intrusion due to diminishing freshwater availability, land subsidence, and climate change induced sea level rise. Through irrigation, saltwater can accumulate in the rice fields and decrease rice production. The study aims at evaluating topsoil salinity and examining a potential link between topsoil salinity and rice production systems in a case study in the Tra Vinh province of the VMD. For this, we applied two geophysical methods, namely, 3D electrical resistivity tomography (ARES II) and electromagnetic induction (EM38‐MK2). 3D ARES II measurements with different electrode spacings were compared with EM38‐MK2 topsoil measurements to evaluate their respective potential for monitoring topsoil salinity on an agricultural scale and the relationship between land‐use types and topsoil salinity. Results show that EM38‐MK2 is a rapid and powerful tool for obtaining high‐resolution topsoil salinity maps for rice fields. With ARES II data, 3D maps up to 40 m depth can be created, but compared with EM38‐MK2 topsoil maps, topsoil salinity was underestimated due to limitations in resolution. Salt contamination of above 300 mS m−1 was found in some double‐cropped rice fields, whereas in triple‐cropped rice fields salinity was below 200 mS m−1. Results clearly show a relation between topsoil salinity and proximity to the saline water sources; however, a clear link between rice production and topsoil salinity could not be established. The study proved that geophysical methods are useful tools for assessing and monitoring topsoil salinity at agricultural fields scale in the VMD.Publication Integrated land-use systems contribute to restoring water cycles in the Brazilian Cerrado biome(2024) Glatzle, Sarah; de Almeida, Roberto Giolo; Pereira Barsotti, Mariana; Bungenstab, Davi José; Giese, Marcus; Macedo, Manuel Claudio M.; Stuerz, Sabine; Asch, FolkardCerrado, constituting native Brazilian vegetation in the tropical and subtropical grasslands, savannas, and shrublands biome, has been extensively replaced by crop and pastureland, resulting in reduced water recycling to the atmosphere via evapotranspiration (ET). Re-introducing trees via integrated land-use systems potentially restores soil health and water-related processes; however, field data are scarce. During two years, we monitored soil moisture dynamics of natural Cerrado (CER), continuous pasture (COP), integrated crop-livestock (ICL), and integrated crop-livestock-forestry (ICLF) systems across 100 cm soil depth. Across years, mean soil moisture was highest for ICL, followed by COP and lowest in systems with trees (ICLF and CER). However, seasonal and spatial analyses revealed pronounced differences between soil layers and systems. COP and ICL mainly lost water from upper soil layers, whereas in ICLF, the strongest water depletion was observed at 40–100 cm depth, almost reaching a permanent wilting point during the dry season. CER was driest in the upper 40 cm, but water storage was highest below 60 cm depth. Our results suggest that compared to conventional land-use practices, integrated systems, including trees, increase water recycling to the atmosphere via ET and potentially compensate for the loss of key ecological functions of degraded or replaced Cerrado.Publication Different quality classes of decomposing plant residues influence dissolved organic matter stoichiometry which results in different soil microbial processing(2024) Poosathit, Ratanaporn; Kunlanit, Benjapon; Rasche, Frank; Vityakon, PatmaThe influence of the quantities and ratios of dissolved organic carbon (DOC) and dissolved nitrogen (DN) generated by different chemical quality classes of organic residues on soil microbial processes in the decomposition process is not well understood. If the DOC-to-DN ratio (hereafter, ratio) of the substrate is close to that of the microbial C-to-N ratio, then the DOC-and-DN stoichiometry of the substrate is balanced, resulting in enhanced microbial processing, i.e., carbon use efficiency (CUE). Uncertainty exists about the influence of DN and the DOC-to-DN ratio on CUE, particularly in high-quality class (high nitrogen) residue-treated soils. A long-term field experiment was used to explore the effect of the annual application of residues of different quality classes on decomposition processes, focusing on the effects of DOC, DN, and the ratio on the microbial metabolic quotient (qCO2), which is the inverse of CUE. DOC and DN were extracted from soils during the 13th year of the experiment. Soils treated with high-quality class groundnut residue (high-nitrogen) had higher DN (5.4 ± 2.6 mg N kg−1) and a lower ratio (6.8 ± 2.6) than those treated with medium-quality (medium-nitrogen) tamarind (3.0 ± 0.6 and 10.7 ± 2.2, respectively). The positive influence of DN on qCO2 (R2 = 0.49 *) in groundnut-treated soil suggested that the high bioavailability of DN reduced CUE due to imbalanced DOC-and-DN stoichiometry. This contradicted earlier published findings on high-nitrogen residues which had balanced DOC-and-DN stoichiometry. The positive influence of the ratio on qCO2 under the tamarind-treated soil (R2 = 0.60 *) indicated that its balanced DOC-and-DN stoichiometry enhanced CUE. High-quality class organic residues can result in either higher or lower CUE than their lower-quality class counterparts depending on whether the resulting DOC-and-DN stoichiometry is balanced or imbalanced.Publication Potential for quantifying general environmental resilience of dairy cattle in sub-Saharan Africa using deviations in milk yield(2023) Oloo, Richard D.; Mrode, Raphael; Bennewitz, Jörn; Ekine-Dzivenu, Chinyere C.; Ojango, Julie M. K.; Gebreyohanes, Gebregziabher; Mwai, Okeyo A.; Chagunda, Mizeck G. G.Introduction: Genetic improvement of general resilience of dairy cattle is deemed as a part of the solution to low dairy productivity and poor cattle adaptability in sub-Saharan Africa (SSA). While indicators of general resilience have been proposed and evaluated in other regions, their applicability in SSA remains unexplored. This study sought to test the viability of utilizing log-transformed variance (LnVar), autocorrelation (rauto), and skewness (Skew) of deviations in milk yield as indicators of general resilience of dairy cows performing in the tropical environment of Kenya. Methods: Test-day milk yield records of 2,670 first-parity cows performing in three distinct agroecological zones of Kenya were used. To predict expected milk yield, quantile regression was used to model lactation curve for each cow. Subsequently, resilience indicators were defined based on actual and standardized deviations of observed milk yield from the expected milk yield. The genetic parameters of these indicators were estimated, and their associations with longevity and average test-day milk yield were examined. Results: All indicators were heritable except skewness of actual and standardized deviation. The log-transformed variance of actual (LnVar1) and standardized (LnVar2) deviations had the highest heritabilities of 0.19 ± 0.04 and 0.17 ± 0.04, respectively. Auto-correlation of actual (rauto1) and standardized (rauto2) deviations had heritabilities of 0.05 ± 0.03 and 0.07 ± 0.03, respectively. Weak to moderate genetic correlations were observed among resilience indicators. Both rauto and Skew indicators had negligible genetic correlations with both longevity and average test-day milk yield. LnVar1 and LnVar2 were genetically associated with better longevity (rg = −0.47 ± 0.26 and −0.49 ± 0.26, respectively). Whereas LnVar1 suggested that resilient animals produce lower average test-day milk yield, LnVar2 revealed a genetic association between resilience and higher average test-day milk yield. Discussion: Log transformed variance of deviations in milk yield holds a significant potential as a robust resilience indicator for dairy animals performing in SSA. Moreover, standardized as opposed to actual deviations should be employed in defining resilience indicators because the resultant indicator does not inaccurately infer that low-producing animals are inherently resilient. This study offers an opportunity for enhancing the productivity of dairy cattle performing in SSA through selective breeding for resilience to environmental stressors.Publication Predicting nitrogen excretion of cattle kept under tropical and subtropical conditions using semimechanistic models(2023) Salazar‐Cubillas, Khaterine; Corea, Edgardo; Dickhoefer, UtaThe present study aims at evaluating whether current semimechanistic models developed for temperate cattle systems can be adopted for cattle under (sub‐) tropical husbandry systems to adequately (accurately and precisely) predict total nitrogen (TN), urine nitrogen (UN), faecal nitrogen (FN) excretion and its partition into different FN fractions. Selected models were built based on the feeding recommendations for ruminants of the British (Model A), German (Model G) and French (INRA; Model I) system. Model evaluation was conducted using eight nitrogen balance studies performed in El Salvador, Kenya and Peru (n = 392 individual observations including lactating cows, heifers and steers). Concordance correlation coefficient, root mean square errors (RMSE), and mean biases were estimated to evaluate the models' adequacy in predicting nitrogen excretion. Input variables causing greatest variation in nitrogen excretion prediction were identified by a sensitivity analysis and adjusted. Model G was able to adequately (i.e., RMSE of <25% of observed mean, systematic error of <5% of the mean square error) predict TN excretion through a compensation between overestimation of UN excretion and underestimation of FN excretion. None of the models were able to adequately predict UN, FN, and different FN fractions. Model I adequately predicted FN (RMSE = 18%) when duodenal microbial crude protein flow was increased, and the intercept used to predict FN excretion was reduced from 4.30 to 3.82 g of nitrogen per kilogram of dry matter intake. These adjustments, however, were not sufficient to predict adequately UN excretion (RMSE = 38%), individual FN fractions (RMSE > 56%), and TN (RMSE = 22%) excretion, by Model I.Publication SAMM version 1.0: A numerical model for microbial-mediated soil aggregate formation(2024) Laub, Moritz; Blagodatsky, Sergey; Van de Broek, Marijn; Schlichenmaier, Samuel; Kunlanit, Benjapon; Six, Johan; Vityakon, Patma; Cadisch, GeorgMaintaining soil organic matter (SOM) is crucial for healthy and productive agricultural soils and requires understanding at the process level, including the role of SOM protection by soil aggregates and the connection between microbial growth and aggregate formation. We developed the Soil Aggregation through Microbial Mediation (SAMM) model, to represent this important connection. The pools of SAMM are fully measurable, and we calibrated and evaluated it against data from a long-term bare fallow experiment in a tropical sandy soil. This experiment received additions of plant litter of different compositions, which resulted in twice the soil carbon stocks in the best treatment compared to the control (about 8 vs. 4 t C ha-1 in 0–15 cm soil depth) after 25 years. As hypothesized, the SAMM model effectively represented the microbial growth response after the addition of litter and the subsequent formation and later destabilization of aggregates. The low correlations between different calibrated model parameters (r<0.5 for all parameters; r>0.4 for only 4 of 22) showed that SAMM is parsimonious. SAMM was able to capture differences between treatments in soil organic carbon (Nash–Sutcliffe modeling efficiency (EF) of 0.68), microbial nitrogen (EF of 0.24), and litter carbon (EF of 0.80). The amount of carbon within the aggregates (EF of 0.60) and in the free silt and clay fraction (EF of 0.24) was also simulated very well to satisfactorily. Our model results suggested that in spite of the sandy soil, up to 50 % of carbon stocks were stabilized through aggregate protection mechanisms; and that microbial and physical aggregate formation coexists. A version of the SAMM model without aggregate protection (SAMMnoAgg) initially failed to stabilize soil organic carbon (EF decreased to -3.68) and the simulation of microbial nitrogen worsened (EF of 0.13). By recalibrating SAMMnoAgg, it was possible to partially correct for the lack of aggregate protection by reducing the rate of mineral-attached carbon decomposition by about 85 % (EF of 0.68, 0.75, and 0.18 for SOC, litter carbon, and microbial nitrogen, respectively). However, the slightly better evaluation statistics of SAMM (e.g., Akaike information criterion of 5351 vs. 5554) suggest that representing aggregate dynamics in SOM models can be beneficial and necessary to understand the mechanism behind SOM dynamics. Our results indicate that current models without aggregate formation partly compensate for the absence of aggregate protection by lowering the turnover rates of other pools. Thus, they remain suitable options where data on aggregate associated carbon are not available.Publication Development of a robust sensor calibration for a commercially available rising platemeter to estimate herbage mass on temperate seminatural pastures(2024) Werner, Jessica; Salazar‐Cubillas, Khaterine; Perdana-Decker, Sari; Obermeyer, Kilian; Velasco, Elizabeth; Hart, Leonie; Dickhoefer, UtaRising platemeters are commonly used in Ireland and New Zealand for managing intensive pastures. To assess the applicability of a commercial rising platemeter operating with a microsonic sensor to estimate herbage mass with its own equation, the objectives were (i) to validate the original equation; (ii) to identify possible factors hampering its accuracy and precision; and (iii) to develop a new equation for heterogeneous swards. A comprehensive dataset (n = 1511) was compiled on the pastures of dairy farms. Compressed sward heights were measured by the rising platemeter. Herbage mass was harvested to determine reference herbage availability. The adequacy of estimating herbage mass was assessed using root mean squared error (RMSE) and mean bias. As the adequacy of the original equation was low, a new equation was developed using multiple regression models. The mean bias and the RMSE for the new equation were overall low with 201 kg dry matter/ha and 34.6%, but it tended to overestimate herbage availability at herbage mass < 500 kg dry matter/ha and underestimate it at >2500 kg dry matter/ha. Still, the newly developed equation for the microsonic sensor-based rising platemeter allows for accurate and precise estimation of available herbage mass on pastures.Publication Trophic level and specialization moderate effects of habitat loss and landscape diversity on cavity‐nesting bees, wasps and their parasitoids(2024) Klaus, Felix; Tscharntke, Teja; Grass, Ingo1. Habitat loss is a primary driver of biodiversity decline, but differences in species responses to habitat loss from local to landscape scales are poorly understood. 2. Trophic level, food and habitat specialization have been suggested to be important predictors of species responses to habitat loss, landscape diversity and landscape scale. 3. Using cavity-nesting communities of bees, wasps and their parasitoids on calcareous grasslands as a model system allowed us to compare responses of species differing regarding their trophic level, and degree of specialization on habitat and food. 4. We found that species from higher trophic levels experienced semi-natural habitat at larger spatial scales than those of lower trophic levels, but only, when they were generalists (abundance of bees, 150 m radius, vs. wasps feeding on herbivores, 450 m radius), not specialists (bees, 150 m, vs. bee parasitoids, 150 m). 5. Parasitoids, which are typically more specialized regarding their food resources (hosts), compared to predators such as predatory wasps, responded to habitat loss at the same spatial scales as their hosts, suggesting strong bottom-up effects of resource availability, that is, host availability driving parasitoid abundance. 6. Bees were mostly habitat specialists of calcareous grasslands and mainly driven by local habitat loss, whereas wasps as habitat generalists were mostly affected by landscape diversity. 7. Our study highlights the need to consider the different spatial scales contingent on trophic level and specialization of target species groups, maintaining or restoring both local habitat and landscape diversity, as this is needed for their successful conservation.