Core Facility Hohenheim
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/16626
Browse
Browsing Core Facility Hohenheim by Subject "Bacillus subtilis"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis(2020) Vahidinasab, Maliheh; Lilge, Lars; Reinfurt, Aline; Pfannstiel, Jens; Henkel, Marius; Morabbi Heravi, Kambiz; Hausmann, RudolfBackground: Plipastatin is a potent Bacillus antimicrobial lipopeptide with the prospect to replace conventional antifungal chemicals for controlling plant pathogens. However, the application of this lipopeptide has so far been investigated in a few cases, principally because of the yield in low concentration and unknown regulation of biosynthesis pathways. B. subtilis synthesizes plipastatin by a non-ribosomal peptide synthetase encoded by the ppsABCDE operon. In this study, B. subtilis 3NA (a non-sporulation strain) was engineered to gain more insights about plipastatin mono-production. Results: The 4-phosphopantetheinyl transferase Sfp posttranslationally converts non-ribosomal peptide synthetases from inactive apoforms into their active holoforms. In case of 3NA strain, sfp gene is inactive. Accordingly, the first step was an integration of a repaired sfp version in 3NA to construct strain BMV9. Subsequently, plipastatin production was doubled after integration of a fully expressed degQ version from B. subtilis DSM10T strain (strain BMV10), ensuring stimulation of DegU-P regulatory pathway that positively controls the ppsABSDE operon. Moreover, markerless substitution of the comparably weak native plipastatin promoter (Ppps) against the strong constitutive promoter Pveg led to approximately fivefold enhancement of plipastatin production in BMV11 compared to BMV9. Intriguingly, combination of both repaired degQ expression and promoter exchange (Ppps::Pveg) did not increase the plipastatin yield. Afterwards, deletion of surfactin (srfAA-AD) operon by the retaining the regulatory comS which is located within srfAB and is involved in natural competence development, resulted in the loss of plipastatin production in BMV9 and significantly decreased the plipastatin production of BMV11. We also observed that supplementation of ornithine as a precursor for plipastatin formation caused higher production of plipastatin in mono-producer strains, albeit with a modified pattern of plipastatin composition. Conclusions: This study provides evidence that degQ stimulates the native plipastatin production. Moreover, a full plipastatin production requires surfactin synthetase or some of its components. Furthermore, as another conclusion of this study, results point towards ornithine provision being an indispensable constituent for a plipastatin mono-producer B. subtilis strain. Therefore, targeting the ornithine metabolic flux might be a promising strategy to further investigate and enhance plipastatin production by B. subtilis plipastatin mono-producer strains.Publication Genetic code expansion for controlled surfactin production in a high cell-density Bacillus subtilis strain(2025) Hermann, Alexander; Hiller, Eric; Hubel, Philipp; Biermann, Lennart; Benatto Perino, Elvio Henrique; Kuipers, Oscar Paul; Hausmann, Rudolf; Lilge, Lars; Hermann, Alexander; Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (A.H.); (E.H.); (L.B.); (E.H.B.P.); (R.H.); Hiller, Eric; Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (A.H.); (E.H.); (L.B.); (E.H.B.P.); (R.H.); Hubel, Philipp; Core Facility Hohenheim, Mass Spectrometry Core Facility, University of Hohenheim, 70599 Stuttgart, Germany;; Biermann, Lennart; Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (A.H.); (E.H.); (L.B.); (E.H.B.P.); (R.H.); Benatto Perino, Elvio Henrique; Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (A.H.); (E.H.); (L.B.); (E.H.B.P.); (R.H.); Kuipers, Oscar Paul; Department of Molecular Genetics, University of Groningen, 9747 AG Groningen, The Netherlands;; Hausmann, Rudolf; Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (A.H.); (E.H.); (L.B.); (E.H.B.P.); (R.H.); Lilge, Lars; Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (A.H.); (E.H.); (L.B.); (E.H.B.P.); (R.H.); Fouillaud, MireilleBackground: In biotechnology, B. subtilis is established for heterologous protein production. In addition, the species provides a variety of bioactive metabolites, including the non-ribosomally produced surfactin lipopeptide. However, to control the formation of the target product-forming enzyme, different expression systems could be introduced, including the principle of genetic code expansion by the incorporation of externally supplied non-canonical amino acids. Methods: Integration of an amber stop codon into the srfA operon and additional chromosomal integration of an aminoacyl-tRNA synthetase/tRNA mutant pair from Methanococcus jannaschii enabled site-directed incorporation of the non-canonical amino acid O-methyl-L-tyrosine (OMeY). In different fed-batch bioreactor approaches, OMeY-associated surfactin production was quantified by high-performance thin-layer chromatography (HPTLC). Physiological adaptations of the B. subtilis production strain were analyzed by mass spectrometric proteomics. Results: Using a surfactin-forming B. subtilis production strain, which enables high cell density fermentation processes, the principle of genetic code expansion was introduced. Accordingly, the biosynthesis of the surfactin-forming non-ribosomal peptide synthetase (NRPS) was linked to the addition of the non-canonical amino acid OMeY. In OMeY-associated fed-batch bioreactor fermentation processes, a maximum surfactin titre of 10.8 g/L was achieved. In addition, the effect of surfactin induction was investigated by mass spectrometric proteome analyses. Among other things, adaptations in the B. subtilis motility towards a more sessile state and increased abundances of surfactin precursor-producing enzymes were detected. Conclusions: The principle of genetic code expansion enabled a precise control of the surfactin bioproduction as a representative of bioactive secondary metabolites in B. subtilis . This allowed the establishment of inducer-associated regulation at the post-transcriptional level with simultaneous use of the native promoter system. In this way, inductor-dependent control of the production of the target metabolite-forming enzyme could be achieved.Publication Surfactin shows relatively low antimicrobial activity against Bacillus subtilis and other bacterial model organisms in the absence of synergistic metabolites(2022) Lilge, Lars; Ersig, Nadine; Hubel, Philipp; Aschern, Moritz; Pillai, Evelina; Klausmann, Peter; Pfannstiel, Jens; Henkel, Marius; Morabbi Heravi, Kambiz; Hausmann, RudolfSurfactin is described as a powerful biosurfactant and is natively produced by Bacillus subtilis in notable quantities. Among other industrially relevant characteristics, antimicrobial properties have been attributed to surfactin-producing Bacillus isolates. To investigate this property, stress approaches were carried out with biotechnologically established strains of Corynebacterium glutamicum, Bacillus subtilis, Escherichia coli and Pseudomonas putida with the highest possible amounts of surfactin. Contrary to the popular opinion, the highest growth-reducing effects were detectable in B. subtilis and E. coli after surfactin treatment of 100 g/L with 35 and 33%, respectively, while P. putida showed no growth-specific response. In contrast, other antimicrobial biosurfactants, like rhamnolipids and sophorolipids, showed significantly stronger effects on bacterial growth. Since the addition of high amounts of surfactin in defined mineral salt medium reduced the cell growth of B. subtilis by about 40%, the initial stress response at the protein level was analyzed by mass spectrometry, showing induction of stress proteins under control of alternative sigma factors σB and σW as well as the activation of LiaRS two-component system. Overall, although surfactin is associated with antimicrobial properties, relatively low growth-reducing effects could be demonstrated after the surfactin addition, challenging the general claim of the antimicrobial properties of surfactin.