Browsing by Subject "Heubacillus"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Adaptation of model organisms and environmental bacilli to glyphosate gives insight to species-specific peculiarities of the shikimate pathway(2024) Schwedt, Inge; Commichau, Fabian M.Glyphosate (GS), the active ingredient of the popular herbicide Roundup, inhibits the 5-enolpyruvyl shikimate-3-phosphate (EPSP) synthase of the shikimate pathway, which is present in archaea, bacteria, Apicomplexa, algae, fungi, and plants. In these organisms, the shikimate pathway is essential for de novo synthesis of aromatic amino acids, folates, quinones and other metabolites. Therefore, the GS-dependent inhibition of the EPSP synthase results in cell death. Previously, it has been observed that isolates of the soil bacteria Burkholderia anthina and Burkholderia cenocepacia are resistant to high amounts of GS. In the framework of this PhD thesis, it could be demonstrated that B. anthina isolates are not intrinsically resistant to GS. However, B. anthina rapidly adapts to the herbicide at the genome level and the characterization of GS-resistant suppressor mutants led to the discovery of a novel GS resistance mechanism. In B. anthina, the acquisition of loss-of-function mutations in the ppsR gene increases GS resistance. The ppsR gene encodes a regulator of the phosphoenolpyruvate (PEP) synthetase PpsA. In the absence of a functional PpsR protein, the bacteria synthesize more PEP, which competes with GS for binding in the active site of the EPSP synthase, increasing GS resistance. The EPSP synthase in B. anthina probably does not allow changes in the amino acid sequence as it is the case in other organisms. Indeed, the Gram-negative model organism Escherichia coli evolves GS resistance by the acquisition of mutations that either reduce the sensitivity of the EPSP synthase or increase the cellular concentration of the enzyme. Unlike E. coli, the EPSP synthase is also critical for the viability of Gram-positive model bacterium Bacillus subtilis. This observation is surprising because the enzyme belongs to the class of GS-insensitive EPSP synthases. In fact, the EPSP synthase is essential for growth of B. subtilis. The determination of the nutritional requirements allowing the growth of B. subtilis and E. coli mutants lacking EPSP synthase activity revealed that the demand for shikimate pathway intermediates is higher in the former organism. This finding explains why laboratory as well as environmental Bacilli exclusively adapt to GS by the mutational inactivation of glutamate transporter genes. Here, it was also shown that a B. subtilis mutant lacking EPSP synthase activity grows in minimal medium only when additional mutations accumulate in genes involved in the regulation of aerobic/anaerobic metabolism and central carbon metabolism. The characterization of these additional mutants will help to elucidate the peculiarities of the shikimate pathway in B. subtilis. Moreover, the mutants could be useful to identify the aromatic amino acid transporters that still await their discovery.Publication Exploiting novel strategies for the production of surfactin in Bacillus subtilis cultures(2021) Hoffmann, Mareen; Hausmann, RudolfBiosurfactants are synthesized by various microorganisms. These surface-active molecules are a promising alternative to petrochemically and oleochemically produced surfactants. Advantageously, biosurfactants are reported to be better biodegradable and less toxic. The cyclic lipopeptide surfactin synthesized by Bacillus subtilis displays one interesting biosurfactant. Many studies report on the outstanding physico-chemical characteristics and add on benefits such as antimicrobial properties. Hence, surfactin has the potential to be used in a variety of industrial sectors. Nevertheless, processes ensuring both robustness and high titers are rare, especially as conventional aerobic bioreactor cultivations share one major disadvantage, namely excessive foaming. To approach industrial processes, different methods are applied, which can be categorized in three practices. These are (1) media and process parameter optimization, (2) strain engineering, and (3) investigating novel process strategies. For the latter category, the anaerobic growth by nitrate respiration poses an interesting foam-free alternative. In this sense, the anaerobic cultivation of B. subtilis to produce surfactin coupled with the three afore mentioned practices was addressed in this thesis targeting at a foam-free surfactin production process. In the 1st publication, the genome reduced strain B. subtilis IIG-Bs20-5-1, a derivative of the laboratory strain 168 able to synthesize surfactin, was evaluated with respect to its suitability as surfactin producer at various temperatures under both aerobic and anaerobic conditions. It was hypothesized that a deletion of 10% of the genome, e.g., non-essential genes synthesizing prophages or the antibiotic bacilysin, saves metabolic resources and hence results in increased surfactin titers. Strains B. subtilis JABs24, a 168 derivative able to synthesize surfactin but without genome reduction, and the surfactin producer B. subtilis DSM 10T served for comparison. Although strain IIG-Bs20-5-1 was superior regarding specific growth rate µ and biomass yield YX/S, the strain was inferior with respect to surfactin titers, product related yields YP/S and YP/X, and specific productivity q. Indeed, compared to others in literature described strains, B. subtilis JABs24 was emphasized as promising target strain for further process development, reaching high surfactin titers of 1147 mg/L aerobically and 296 mg/L anaerobically as well as exceptionally high product yields YP/X under anaerobic conditions. Accordingly, iterative process optimization was hypothesized to improve anaerobically achieved surfactin titers. However, several aspects to consider of anaerobic growth of B. subtilis by nitrate respiration were described in the 2nd publication. Amongst others, increasing ammonium concentrations, resulting from nitrate reduction to ammonium via nitrite, were shown to have no impact on growth of strain JABs24, but surfactin titers and expression of nitrate reductase promoter PnarG were reduced. Nitrite was shown to peak within the first hours of cultivation and concentrations up to 10 mmol/L resulted in prolonged lag-phases. Moreover, acetate accumulated drastically during the time course of cultivation independent of glucose availability, thus decreasing the glucose flux into biomass. Acetate additionally influenced both specific growth rate µ and PnarG expression negatively. Concluding, the general feasibility of anaerobic fed-batch cultivations to synthesize surfactin was shown, but several aspects must be addressed in future works to make this strategy an equated process with aerobic cultivations. In the 3rd publication, a self-inducible surfactin synthesis process was presented where expression of the surfactin operon in B. subtilis JABs24 was induced under oxygen limited conditions. The native promoter of the srfA operon PsrfA was replaced by anaerobically inducible nitrate reductase promoter PnarG and nitrite reductase promoter PnasD. Shake flask cultivations with varying oxygen availabilities demonstrated that both PnarG and PnasD can serve as auto-inducible promoters. At high oxygen availability, surfactin was not produced in the promoter exchange strains. At lowest oxygen availability, the strain carrying PnarG reached lower surfactin titers than the native JABs24 strain, although expression levels of PnarG and PsrfA were similar. However, strain B. subtilis MG14 with PsrfA::PnasD reached 1.4-fold higher surfactin titers with 696 mg/L and an exceptionally high YP/X of 1.007 g/g with overall lower foam levels. Though, bioreactor cultivations have illustrated that the anaerobic induction must be performed slowly as to avoid cell lysis, resulting in so-defined aerobic-anaerobic switch processes. With further appropriate process optimization, a simple and robust surfactin production process with highly reduced or even no foam formation can be achieved employing strain B. subtilis MG14.