Browsing by Subject "Resistenz"
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Publication Analysis of the emerging situation of resistance to succinate dehydrogenase inhibitors in Pyrenophora teres and Zymoseptoria tritici in Europe(2018) Rehfus, Alexandra; Vögele, RalfPhytopathogenic fungi such as Pyrenophora teres and Zymoseptoria tritici cause destructive diseases of barley and wheat in all major cereal production areas worldwide. The control of net blotch of barley caused by P. teres and Septoria tritici blotch (STB) of wheat caused by Z. tritici mainly relies on the usage of fungicides. Thereby, three single-site inhibiting fungicide classes, the quinone outside inhibitors (QoIs), the demethylation inhibitors (DMIs) and the succinate dehydrogenase inhibitors (SDHIs) have the highest relevance. The class of SDHIs is the most newly introduced fungicide class and inhibits the fungal succinate dehydrogenase complex (SDH) which is a critical enzyme of the respiratory chain and the tricarboxylic cycle. The upcoming SDHI resistance in European populations of P. teres and Z. tritici was investigated in the present study and resistance mechanisms underlying SDHI resistance were characterised. SDHI resistant isolates of both pathogens were collected in intensive monitoring programmes which covered the major barley and wheat growing areas in Europe. SDHI resistant isolates showed point mutations in the genes SdhB, SdhC and SdhD which cause amino acid alteration in the subunits B, C and D of the SDH complex. First SDHI resistant isolates of both pathogens were detected in 2012 and showed amino acid alteration, histidine to tyrosine at position 277 in SDH B (B-H277Y) in the case of P. teres and a threonine to asparagine exchange at position 79 in SDH-C (C-T79N) in the case of Z. tritici. In P. teres, a significant increase of SDHI resistant isolates from 2012 to 2015 was observed, particularly in countries such as France and Germany. Several target-site mutations leading to amino acid exchanges, namely B-H277Y, C-S73P, C-N75S, C-G79R, C-H134R, C-S135R, D-D124N/E, D-H134R, D-G138V, D-D145G and D-E178K, were identified in those isolates. Sequencing of SdhB, SdhC and SdhD genes of several isolates confirmed that each isolate carried one mutation in the Sdh genes, and not two or more in combination. In vitro and in planta sensitivity tests were performed and revealed that each SDH-variant causes a distinct resistance phenotype towards SDHIs. Commercially available SDHIs were compared and isolates showed cross-resistance towards all SDHIs tested, although some minor differences in the response to different mutations were observed. Most of the SDHI resistant P. teres isolates carried C-G79R substitution which was shown to exhibit one of the strongest effects of all detected alterations. In addition to C-G79R, other substitutions, such as C-N75S and D-D145G, were frequently found in the field. These SDH-variants were shown to confer low to moderate levels of resistance. In contrast to the rapid ‘build-up’ of resistant isolates in the population of P. teres in countries such as France and Germany, the emergence of SDHI resistance in Z. tritici did not evolve as fast as observed in net blotch. Here, only a few resistant isolates have been sampled so far (42 resistent of 3431 investigated isolates, 1.2%). An increase of resistant isolates of Z. tritici was observed mainly in Ireland, the United Kingdom and the Netherlands, however, still at low levels. SDH variants B-N225I, B-T268I/A, C-N86S/A, C-T79N/I, C-W80S, C-H152R and C-V166M were detected in SDHI resistant isolates collected in these and other countries such as France and Germany. Four isolates showed two mutations in the Sdh genes in combination. In vitro and in planta sensitivity measurements demonstrated that C-H152R mutants showed the highest resistance level of all investigated SDH variants collected in the field. C-T79N and C-N86S exchanges which have been detected more frequently in the field than C-H152R, were shown to confer lower levels of resistance compared to C-H152R. Both phytopathogenic species were shown to evolve a range of diverse target-site mutations, which led to different alterations in both pathogen species with exception of C-N75S in P. teres and the homologous variant, C-N86S, in Z. tritici. This can be explained by species-specific variation of the SDH enzyme, a different nature of the pathogens (e.g. host plants and disease geographical spread) as well as a different fungicide use pattern (e.g. mode of action diversity and fungicide application intensity). The absence of a dominant major target-site mutation in the case of SDHI resistance in both pathogens is thought to allow SDHIs as effective control agent against both pathogen species also in the future. Nevertheless, anti-resistance management strategies are highly recommended for the usage of SDHIs. These strategies should not only be based on the use of mixtures and alternations of fungicides but should also implement integrated disease control measurements (e.g. resistant host cultivars).Publication Breeding for resistance to Fusarium ear diseases in maize and small-grain cereals using genomic tools(2021) Gaikpa, David Sewordor; Miedaner, ThomasThe world’s human and livestock population is increasing and there is the need to increase quality food production to achieve the global sustainable development goal 3, zero hunger by year 2030 (United Nations, 2015). However, biotic stresses such as Fusarium ear infections pose serious threat to cereal crop production. Breeding for host plant resistance against toxigenic Fusarium spp. is a sustainable way to produce more and safer cereal crops such as maize and small-grain winter cereals. Many efforts have been made to improve maize and small-grain cereals for ear rot (ER) and Fusarium head blight (FHB) resistances, using conventional and genomic techniques. Among small-grain cereals, rye had the shortest maturity period followed by the descendant, hexaploid triticale while both wheat species had the longest maturity period. In addition, rye and triticale were more robust to Fusarium infection and deoxynivalenol accumulation, making them safer grain sources for human and animal consumption. However, a few resistant cultivars have been produced by prolonged conventional breeding efforts in durum wheat and bread wheat. High genetic variation was present within each crop species and can be exploited for resistance breeding. In this thesis, the genetic architecture of FHB resistance in rye was investigated for the first time, by means of genome-wide association study (GWAS) and genomic prediction (GP). GWAS detected 15 QTLs for Fusarium culmorum head blight severity, of which two had major effects. Both weighted and unweighted GP approaches yielded higher prediction abilities than marker-assisted selection (MAS) for FHB severity, heading stage and plant height. Genomics-assisted breeding can shorten the duration of breeding rye for FHB resistance. In the past decade, genetic mapping and omics were used to identify a multitude of QTLs and candidate genes for ear rot resistances and mycotoxin accumulation in maize. The polygenic nature of resistance traits, high genotype x environment interaction, and large-scale phenotyping remain major bottlenecks to increasing genetic gains for ear rots resistance in maize. Phenotypic and molecular analyses of DH lines originating from two European flint landraces (“Kemater Landmais Gelb”, KE, and “Petkuser Ferdinand Rot”, PE) revealed high variation for Gibberella ear rot (GER) severity and three agronomic traits viz. number of days to female flowering, plant height and proportion of kernels per cob. By employing multi-SNP GWAS method, we found four medium-effect QTLs and many small-effect (10) QTLs for GER severity in combined DH libraries (when PCs used as fixed effects), none co-localized with the QTLs detected for the three agronomic traits analyzed. However, one major QTL was detected within KE DH library for GER severity. Two prioritized SNPs detected for GER resistance were associated with 25 protein-coding genes placed in various functional categories, which further enhances scientific knowledge on the molecular mechanisms of GER resistance. Genome-based approaches seems promising for tapping GER resistance alleles from European maize landraces for applied breeding. After several cycles of backcrossing and sufficient selection for agronomic adaptation traits, the resistant lines identified in this thesis can be incorporated into existing maize breeding programs to improve immunity against F. graminearum ear infection. Breeding progress can be faster using KE landrace than PE. A successful validation of QTLs identified in this thesis can pave way for MAS in rye and marker-assisted backcrossing in maize. Effective implementation of genomic selection requires proper design of the training and validation sets, which should include part of the current breeding population.Publication Characterisation of the sensitivity of Zymoseptoria tritici to demethylation inhibitors in Europe(2021) Huf, Anna; Vögele, RalfThe fungal pathogen Zymoseptoria tritici (formerly Septoria tritici) causes Septoria tritici blotch (STB), one of the most yield reducing diseases of wheat worldwide. In addition to cultural control measures and the cultivation of wheat varieties with a level of disease resistance, STB control relies heavily on the application of foliar fungicides with different modes of action. The demethylation inhibitors (DMIs) have been one of the most widely applied fungicides for many decades and belong to one of the most important fungicide modes of action in STB management. DMIs inhibit the sterol 14α-demethylase, an essential enzyme in the ergosterol biosynthesis pathway, encoded by the CYP51 gene of fungi. Widespread and intensive use of the DMIs over time has led to a continuous negative shift in the sensitivity of Z. tritici towards DMIs that have been used for a long time. This shift in sensitivity is mainly driven by the accumulation of mutations in the CYP51 gene resulting in the selection of various CYP51 haplotypes. More recently, CYP51 overexpression and an increased efflux activity, based on the overexpression of the MFS1 transporter, have been shown to be additional mechanisms affecting DMI sensitivity of Z. tritici. Inserts in the CYP51 promotor (CYP51p) and MFS1 promotor (MFS1p) were observed to be responsible for CYP51 and MFS1 overexpression. The prevalence and contribution of different DMI resistance mechanisms to a reduced DMI sensitivity of Z. tritici were investigated in isolates from across Europe in 2016 and 2017. The CYP51 gene of all isolates was sequenced and the CYP51p and MFS1p was investigated for inserts in order to determine the character of the CYP51 haplotypes as well as to identify CYP51 overexpression or if an increased efflux activity was occurring in these isolates. Overall, it was shown that the occurrence of CYP51 haplotypes was still the most frequent and important mechanism conferring a reduction in sensitivity to DMIs by Z. tritici in Europe. Nevertheless, an increase in the frequency of isolates exerting CYP51 overexpression and those exhibiting increased efflux activity was observed compared to earlier studies. Glasshouse data demonstrated that DMIs can still contribute to disease control, and in some cases give full control, of STB even if isolates expressed CYP51 overexpression and/or an increased efflux in addition to also carrying moderately or highly adapted CYP51 haplotypes. However, in order to prevent the further increase and spread of further adapted CYP51 haplotypes plus additional resistance mechanisms in the Z. tritici population across Europe, anti-resistance-management strategies should be a high priority in the use of DMIs. In addition, especially integrated disease management strategies, such as the appropriate choice of cultivars, should be applied in order to keep STB disease pressure low and consequently reduce the number of fungicide applications. Moreover, resistance-management strategies may exploit the limited cross-resistance between different DMIs, for example, by the use of mixtures or alternation of different DMI fungicides. However, control strategies should also incorporate the use of fungicides with different MOAs. The aim of all these strategies is to reduce selection of adapted Z. tritici isolates and consequently to prolong the efficacy of DMIs in STB management.Publication Distribution, detection and genetic background of herbicide-resistant Alopecurus myosuroides (Huds.) in Germany(2015) Rosenhauer, Maria; Gerhards, RolandWeed control is an important part in agricultural practice. Since selective herbicides were introduced, the labour-intensive mechanical weed control was replaced by chemicals. The use of chemicals for weed control has become increasingly problematic due to the evolution of herbicide-resistant weeds. In Germany, Alopecurus myosuroides (Huds.) is one of the most problematic weeds concerning herbicide resistance. The first resistant black-grass biotype in Germany was found in 1982. More than 30 years after the first resistant black-grass was found in Germany (1982), there are still numerous unsolved questions and challenges concerning the problem of herbicide resistance. Further knowledge about the distribution, the detection, and the genetic background of different resistance mechanisms is needed to find comprehensive solutions for the future. Knowledge about the occurrence and distribution of herbicide-resistant black-grass in Germany, and the herbicides primarily affected may provide more detailed information for farmers to quickly react on upcoming resistances. Moreover, if the genetic background of resistance is better understood, practical conclusions regarding the choice of herbicides and management tools can be drawn. Furthermore, a reliable and easy-to-handle test system for the detection of resistances would enable farmers to react faster and in a more targeted manner. The aim of the present study was to investigate these aspects addressing herbicide-resistant black-grass in Germany. How widespread is TSR in Germany? Did the amount of TSR change over the years? Are there “TSR-hot spots” in Germany? The first paper addressed ACCase and ALS-resistant black-grass samples in Germany. It dealt with the distribution and development of TSR in Germany over a period of nine years. It could be demonstrated that TSR was more widespread than expected. The frequency of ACCase-TSR increased from 4.0% in 2004 to 38.5% in 2012. ALS-TSR rose from 0.8% in 2007 to 13.9% in 2012. Both TSRs significantly increased over time within a standing number of seed samples over the years. How many genes are involved in NTSR? Are there differences between the plants and can we detect cross-resistances? The second paper dealt with the inheritance of NTSR conferring resistance to chlorotoluron, fenoxaprop-P-ethyl, pinoxaden, mesosulfuron + iodosulfuron, and flufenacet in six different black-grass plants. Segregation analyses of the quantitative trait showed a minimum of five loci conferring specific resistances. The resistances against chlorotoluron and fenoxaprop-P-ethyl were mostly conferred by one locus, whereas resistances against pinoxaden and mesosulfuron + iodosulfuron were mostly conferred by a minimum of two loci. A minimum of one to three loci explained resistance to flufenacet. The accumulation of resistance loci in individual plants could be achieved by the study. Furthermore, the number of loci was shown to be herbicide- and plant-specific which further confirms the complexity of NTSR. How is it possible to test pre-emergence herbicides in black-grass? Which test system is the most reliable? The aim of the third paper was to find a reliable test system to monitor pre-emergence herbicide resistance in black-grass. It is widely known that diverse sites of action can be affected by NTSR. Moreover, resistance against pre-emergence herbicides belonging to the HRAC groups N, K3, and C2 occur. The outcomes of the study indicate that a soil-based greenhouse test with pre-germinated seeds is most suitable for resistance detection. Discriminating herbicide rates which were able to distinguish between the resistant and susceptible black-grass biotypes were found for all of the herbicides tested. This enables a reliable, quick, and easy way to identify pre-emergence resistance. In conclusion, herbicide-resistant black-grass has become an increasing problem in Germany. The high frequency of nearly 40% ACCase TSR on resistance suspected sites highlights the importance of changes in agricultural practices. The aim should be to avoid the repeated use of single site of action herbicides in short term crop-rotations with large quantities of winter cereals. The accumulation of NTSR loci in single plants increases the risk of biotypes with broad resistances against many different modes of action. Resistance linkages were found to be plant-specific which may result in unpredictable resistance situations in the field. Even pre-emergence herbicides can be affected by NTSR. An option to detect these resistances is provided by a soil-based greenhouse bioassay with pre-germinated seeds.Publication From greenhouse to field practice : herbicide resistance detection using chlorophyll-fluorescence-imaging technology(2017) Wang, Pei; Gerhards, RolandAll over the world, herbicide resistance has developed to one of the most important barriers in weed control, making the implementation of the weed control strategy more complicated. There is an intense need for a rapid, cheap and reliable method to conduct in field detection of herbicide resistant weed populations. In the current thesis with the use of chlorophyll fluorescence imaging technology, such a method is implemented and tested in field conditions. A series of experiments were designed and carried out. The data gathered from these experiments were compiled under three paper articles. Paper 1. A greenhouse experiment was conducted to verify if the parameter, Maximal Photosystem II Quantum Yield (Fv/Fm), could possibly indicate the herbicide efficacy. The chlorophyll-fluorescence-imaging sensor, Weed PAM®, was selected for the measurements. In the first part it was investigated if the Fv/Fm value could differentiate between herbicide sensitive and resistant plants. In the second part two important abiotic stress factors were tested if they affected the Fv/Fm value. I) Six herbicides were tested on herbicide sensitive and resistant Alopecurus myosuroides populations; II) Water shortage and nitrogen deficiency were applied on a herbicide sensitive population to observe their influence on the plants. The sensitive plants presented significantly lower Fv/Fm values than the resistant plants 3 days after treatment (DAT) for the ALS and ACCase inhibitors. On the same day, and for the same treatments the Fv/Fm values of the resistant plants were not affected and similar to the control. Appling a PS II inhibitor reduced the Fv/Fm values of both sensitive and resistant plants rapidly. Yet, sensitive and resistant plants could clearly be separated on 4 DAT based on the different Fv/Fm values. On the other hand, nitrogen deficiency did not influence the photosystem II measurements. Water shortage reduced rapidly the Fv/Fm value of the plants seven days after the application, yet at this point plant symptoms included the death of the plants. According to this experiment, the Weed PAM® sensor has proved its capability to identify the sensitive and resistant A. myosuroides populations shortly after the herbicide application. Paper 2. A verification of the above results was made under field conditions for different A. myosuroides populations and different locations. On the first part 50 populations in total including both sensitive and herbicide resistant populations were tested. The second part field experiments were conducted in ten locations around Germany over two years with the local field population mix. It was investigated if the Weed PAM® sensor could separate between herbicide sensitive and resistant A. myosuroides populations 5 DAT. The different populations were sown in a winter wheat field. Two ACCase- and three ALS- inhibitors were applied. In all herbicide treatments, Fv/Fm values of A. myosuroides were significantly lower than the untreated plants at the 5 DAT. For each location, measurements were conducted at 5 DAT. A visual measurement, to verify the result, was carried out at 21 DAT. In both cases, 95% of the plants were correctly identified as sensitive or resistant. This demonstrated the ability of the Weed PAM® sensor to conduct in field real time detection of herbicide resistant A. myosuroides populations shortly after treatment. Paper 3. Greenhouse and field experiments were carried out to investigate if the chlorophyll fluorescence of soybean plants was altered, under herbicide stress. Herbicide combinations including inhibitors of PS II, DOXP synthase, cell division and microtubule assembly were selected for different pre-emergence treatments. Herbicide combinations including inhibitors of PS II, ALS and ACCase were applied in post-emergence treatments. Chlorophyll fluorescence was measured from the emergence of soybeans until the three/four-leaf stage. Furthermore the stress effect of the different treatments on the soybean plants was determined by measuring their dry biomass. In the greenhouse, post-emergence treatments with ALS and ACCase inhibitors did not seem to induce stress on the soybean plants. As expected, it originally demonstrated low Fv/Fm values when stressed by PS II inhibitors. But the PS II system recovered soon, one week after emergence. Stress induced by other pre-emergence herbicides occurred one week after emergence and lasted longer than the stress induced by the PS II inhibitors. Dry biomass collaborated with the sensor result. Based on the current thesis, the Weed PAM® system can be an important tool in the identification of herbicide resistant weed populations, in a timely manner. It has proven its capabilities both in A. myosuroides as a weed and in soybean plants. This technology will help farmers to take more suitable weed control strategies, as well as less economic and environmental risks.Publication Genetic variation in early maturing European maize germplasm for resistance to ear rots and mycotoxin contamination caused by Fusarium spp.(2010) Bolduan, Christof; Melchinger, Albrecht E.Ear rots of maize, caused by Fusarium spp., are of major concern because they lead to losses in grain yield and contamination with mycotoxins which harm animals and humans. In the absence of other strategies, breeding maize for genetic resistance is currently the most promising avenue to control these rots and mycotoxin accumulation. The predominant pathogens in Central Europe are F. graminearum, the causative agent of Gibberella ear rot (GER), and F. verticillioides, the causative agent of Fusarium ear rot (FER). GER causes contamination with deoxynivalenol (DON), nivalenol and zearalenone (ZEA), whereas FER causes contamination with fumonisins (FUM). Information on the resistance to GER and FER and mycotoxin contamination is lacking for maize adapted to the cooler climatic conditions of Central Europe. In this study we investigated (1) the resistance of early maturing European elite inbred lines against GER and FER and contamination of mycotoxins, (2) the genetic variances and heritabilities for ear rot ratings and mycotoxin concentrations, (3) the correlations of ear rot ratings with mycotoxin concentrations, (4) the correlations between line per se (LP) and testcross performance (TP) for GER rating and DON concentration, (5) the aggressiveness of and mycotoxins produced by different isolates of F. graminearum and F. verticillioides, and (6) the potential of near infrared spectroscopy (NIRS) to estimate concentrations of DON and FUM in maize grains under artificial inoculation. Significant genotypic variances and moderate to high heritabilities were found for GER, DON and ZEA among the inbred lines and for GER and DON among the testcrosses, as well as for FER and FUM among the inbred lines. Further, genotype x environment interaction variances were significant for all traits except FUM. Thus, the results underlined the presence of ample genotypic variation and the need to conduct multi-environment tests for reliable identification of resistant genotypes. Ear rot ratings and mycotoxin production of eight isolates each of F. graminearum and F. verticillioides differed significantly. Even though, isolate x inbred interactions were significant only in the case of F. graminearum, and no rank reversals occurred among the tested inbred lines. Most isolates differentiated the susceptible inbreds from the resistant ones for severity ratings. However, the differences between the two groups were smaller for the less aggressive isolates. Therefore, we recommend using a single, environmentally stable and sufficiently aggressive isolate for resistance screenings under artificial inoculation. Strong correlations between ear rot severity and mycotoxin concentrations indicated that selection for low ear rot severity under artificial inoculation will result in high correlated selection response for low mycotoxin concentration, particularly for GER and DON. Selection for ear rot severity is less resource-demanding and quicker than selection for mycotoxin concentration. Thus, it enables the breeder to maximize selection gain for a given budget. However, the selected elite material should be evaluated for mycotoxin concentrations in order to avoid ?false positives?. In this regard, NIRS showed high potential to predict DON concentrations in grain obtained from artificially inoculated maize. Compared to the commonly employed ELISA assay, NIRS assays are considerably cheaper, because no mycotoxin extractions and test kits are needed. We observed moderate positive correlations between GER and FER, and identified inbreds combining resistance to both ear rots. Therefore, selection for resistance to one pathogen is expected to result in indirect response to the other. Nevertheless, in advanced stages of each breeding cycle, lines preselected for other agronomically important traits should be evaluated for resistance to both pathogens. Genotypic variances for GER and DON were generally higher in LP than TP. Thus, assuming identical selection intensities for each scheme, the expected response to selection for LP should be higher than for TP. However, owing to moderate correlations between LP and TP for GER and DON, selection based on LP is not sufficient, because the ultimate goal is to develop resistant hybrids. Therefore, a multi-stage selection procedure is recommended with evaluation of agronomically promising lines for GER in only one environment in order to eliminate highly susceptible lines, followed by evaluation of TP of the selected lines for GER with one tester of moderate to high resistance level from the opposite heterotic pool in two to three environments.Publication Die Hypersensibilität der Europäischen Pflaume (Prunus domestica L.) gegenüber dem Scharkavirus (Plum pox virus)(2005) Neumüller, Michael; Wünsche, Jens NorbertIn terms of economic damage, Sharka is the most important virus disease in stone fruit crops. The causative agent of this disease is the Plum pox virus (PPV). Some genotypes of European plum (Prunus domstica L.) show a hypersensitive response when infected with PPV. Results about the inheritance of this type of resistance mediated by hypersensitivity and different types of symptoms characteristic for the hypersensitive defence response in the interavtion PPV/Prunus domestica are presented. From the biochemichal point of view, it is shown that the defence response is indeed a hypersensitive response. A strategy for the development of DNA markers for hypersensitivity to PPV in European plum is developed. The potential use of hypersensitivity for solving the Sharka problem is discussed.Publication Integrated management, analysis of mechanisms and early detection of resistant populations of Alopecurus myosuroides HUDS. and Apera spica-venti L. Beauv.(2015) Kaiser, Yasmin; Gerhards, RolandThe control of pests is one of the major challenges in agricultural production worldwide. Especially weeds cause severe yield losses by competing with crops for light, space, water and nutrients. Due to the relatively low costs for acquisition and application of herbicides and a high control efficacy, chemical measures are predominantly applied to control weeds. In Europe, Alopecurus myosuroides HUDS. (blackgrass) and Apera spica-venti L. Beauv. (silky windgrass) are major weeds especially in winter wheat. The occurrence at high population densities in combination with a consequent use of herbicides with the same modes of action has resulted in the selection of resistant populations. Populations with target-site resistance (TSR) as well as non-target-site resistance (NTSR) could be confirmed for A. myosuroides and A. spica-venti. In contrast to the mechanisms of TSR, NTSR mechanisms are less investigated. Due to the steadily increasing number of putative herbicide resistant weed populations, the demand for rapid resistance tests is rising. The papers of the dissertation focus on the integrated management, the investigation of resistance mechanisms and the detection of herbicide resistant weed populations. The following research objectives have been examined within the four work packages (papers): – To develop a new methodology for a rapid detection of herbicide resistance and to confirm that results are comparable with classical greenhouse approaches – To investigate metabolism of herbicides in sensitive and resistant populations of A. myosuroides to gain comprehensive knowledge on resistance mechanisms – To evaluate the influence of agronomic factors on the probability of resistance occurrence and to develop a geo-referenced database for mapping the spread of herbicide-resistant A. spica-venti populations across Europe – To assess the influence of crop rotation and herbicide strategies on population development and herbicide resistance of A. myosuroides and crop yield The four papers come to the following results regarding the main research objectives: 1st paper: A laboratory test was developed to accelerate the detection of herbicide resistance. Therefore, A. myosuroides was cultivated in wellplates containing nutrient agar and herbicides. The evaluation of herbicide resistance was conducted by a sensor, measuring chlorophyll fluorescence. The results of the developed test corresponded well to the standard whole-plant pot tests in the greenhouse. In both tests sensitive and resistant populations were identified, however results of the Chlorophyll Fluorescence Imaging were available earlier. 2nd paper: Metabolism of herbicides was investigated in populations of A. myosuroides by using liquid chromatography - tandem mass spectrometry (LC-MS/MS) to gain comprehensive knowledge on mechanisms of herbicide resistance. NTSR populations differed from sensitive and TSR A. myosuroides in form of an enhanced degradation of the active ingredient or metabolite, depending on the investigated herbicide. For the investigated herbicides (inhibition of ACCase and ALS) it was shown that herbicide metabolism plays an important role regarding herbicide resistance in A. myosuroides. 3rd paper: To evaluate the influence of agronomic factors on the probability of resistance occurrence in A. spica-venti, numerous populations were screened in the greenhouse. The corresponding field history obtained from questionnaires and the results of greenhouse assays were used to develop a GIS-database in which herbicide-resistant A. spica-venti populations were mapped. The statistical analysis revealed that a high percentage of winter crops in the crop rotation, together with conservation tillage, early sowing dates and high population density increased the occurrence of herbicide resistance in A. spica-venti. 4th paper: To assess the impact of crop rotation and herbicide strategies on A. myosuroides, field studies at two locations in Southern Germany have been carried out. Results show that densities of A. myosuroides increased in continuous winter wheat. The introduction of spring crops significantly reduced densities, even without using herbicides. Furthermore it has been shown that the risk of herbicide resistance was reduced when performing a consequent change of herbicide mode of action. The use of herbicides with only one mode of action increased the number of herbicide resistant plants. Crop yield was notably influenced by A. myosuroides in winter wheat. The overall results of this dissertation showed the great impact of agricultural measures on herbicide resistance in A. myosuroides and A. spica-venti and demonstrated opportunities for prevention and management. The developed resistance quick test provides an accelerated detection of herbicide resistance and therefore the chance to initiate resistance management strategies much earlier.Publication Investigations on herbicide resistance in Apera spica-venti populations(2011) Massa, Dario; Gerhards, RolandWeeds belong to the main biotic yield-limiting factors in agricultural fields worldwide. Since the introduction of herbicides in the global market more than six decades ago, agro-ecosystems have been characterized by a strong reliance on herbicides for weed management. However, the selection pressure exerted on weed populations by long-term application of herbicides with the same mode of action has imposed selection for resistance within several weed species. Apera-spica-venti (L.) Beauv. represents one of the most abundant annual grass weeds in autumn-sown crops of Central and Eastern European arable lands. Since the first report on herbicide-resistant A. spica-venti populations in 1994, several cases have been documented. Therefore, it is assumed that this species is evolving resistance to herbicides. The main objectives of the present work were: 1. The development of reliable testing procedures under greenhouse conditions for the verification of herbicide resistance in A. spica-venti populations; 2. The quantification of resistance in A. spica-venti at different herbicide doses using dose-response assays and digital image analysis; 3. The elucidation of resistance mechanisms in A. spica-venti populations at the molecular genetic level through laboratory experiments; 4. The evaluation of the influence of farm management factors on the occurrence and spread of herbicide resistance in A. spica-venti populations through the use of statistical modeling; 5. The development of a geo-referenced database for documenting the spatial and temporal distribution of herbicide-resistant A. spica-venti populations in Europe; 6. The verification of the results obtained from the greenhouse assays under realistic field conditions and the detection of the introgression of herbicide resistance traits into the sensitive population after two generations. The main resistance testing procedure consisted of growing plants in the greenhouse from seeds collected in the suspect fields and spraying them with herbicides. Applications were carried out with an automated precision sprayer either at a single dose or at a range of doses. Herbicide efficacy was then assessed at 15 and 30 days after treatment by direct comparison with untreated controls. Results from the greenhouse assays showed that most of the screened popula¬tions (~70%) have evolved resistance to herbicides, particularly acetolactate synthase (ALS)-inhibitors. Dose-response assays revealed resistance factors at the ED90 (ED90 resistant / ED90 sensitive) of up to 140 after treatment with flupyrsulfuron-methyl, thus indicating that A. spica-venti is a resistance-prone grass weed. A novel method for quantifying resistance based on the assessment of percent canopy cover using digital image analysis has been developed in the greenhouse to provide a potential alternative to the labour-intensive and time-consuming dry weight assessments. Laboratory experiments conducted on over 70 ALS-resistant populations revealed that target site mutations were responsible for the observed resistance. Cleaved Amplified Polymorphic Sequences (CAPS) marker analysis and sequencing of the amplified 3? and 5? ends of the ALS gene by Rapid Amplification of cDNA Ends (RACE) revealed the presence of previously known as well as novel mutations endowing resis¬tance to ALS-inhibitors. The development of a risk assessment model allowed the evaluation of the influence of farm management factors on the probability of resistance occurrence in A. spica-venti populations. Results showed that a high percentage of winter crops in the rotation (>75%), together with reduced or no-till practices, early sowing and high population density significantly increase the risk of resistance emergence. An internet-based geo-referenced database was developed to document the spatial and temporal distribution of herbicide-resistant A. spica-venti populations in Europe. Finally, field experiments were carried out over the course of two years (2008/2010) by sow-ing ALS-resistant and susceptible A. spica-venti populations in winter wheat plots. Resistant plants survived herbicide application, completed their life cycle and set vital seeds, which showed a significantly higher germination rate compared to the sensitive population. However, maximum yield losses of only ~10% could be ob¬served at A. spica-venti panicle densities of >400 m-2. Greenhouse bioassays conducted at the end of the first year with plants from seeds collected in the sensitive plots showed an increase in tolerance to ALS-inhibitors of ~20%, thus suggesting introgression of herbicide resis¬tance traits into the sensitive population already after one year. The outcomes of this work add knowledge to the understanding of the mechanisms underlying resistance to herbicides in A. spica-venti populations and provide weed scientists and consultants with useful tools for the reliable diagnosis and prevention of herbicide resistance in weed populations.Publication Investigations on herbicide resistant grass weeds(2009) Balgheim, Natalie; Balgheim, NatalieWeeds are one of the most troublesome threats for farmers, causing high yield losses and serving as hosts for pathogens and insect pests. Since the introduction of chemical weed control agricultural production systems have changed. During the last years the number of herbicide resistant grass weeds is steadily increasing especially in cereal monocultures. These monocultures are characterised by the repeated use of herbicides with the same modes of action and minimum-tillage practices. All these factors can one by one or all together lead to the development of herbicide resistant grass weeds. In general herbicide resistance is the result of heritable changes to biochemical processes that enable plant survival when treated with herbicides. Two different mechanisms are commonly known to confer resistance: target-site resistance and non-target-site resistance. First is the result of an altered target enzyme, where a single point mutation is changing the amino acid structure and exclude herbicide from effectively binding to the target enzyme. The second one, non-target-site resistance, can be summarised as the mechanisms which includes all other mechanisms than target-site resistance, for example rapid metabolic degradation or translocation of herbicides. In Germany, the most trouble causing weeds associated with target-site resistance are the grass weeds Alopecurus myosuroides Huds. and A. spica-venti L. Beauv.. All investigations carried out during this thesis are dealing with those two weed species. Therefore the main objectives of this thesis are the following: To characterise the resistance levels and patterns of both species. To identify the underlying resistance mechanisms. To develop molecular markers for rapid detection of target-site based resistance. To get an idea of the spatial and temporal distribution of herbicide resistant grass weeds in arable fields. Both investigated species are highly adapted to cereals and developed resistance against ACCase and ALS inhibiting herbicides. So they are an increasing problem for German farmers and in consideration of the fact, that both weeds have developed multiple resistances, detecting and management strategies for controlling and preventing of these weeds are absolutely necessary. Carried out dose response relationships proved strong resistance of the A. myosuroides biotype BR(R) against cycloxydim and fenoxaprop, where low resistance was expressed against clethodim. However, biotype BL(R) showed resistance to fenoxaprop and clodinafop only. Dose response experiments carried out with the A. spica-venti biotype showed resistance to sulfosulfuron and iodo-/mesosulfuron. No cross resistances could be detected in both species. The carried out DNA analysis revealed target-site resistance as the underlying resistance mechanism. BR(R) and BL(R) showed well known substitutions: an amino acid change on position 1781 with in the CT domain result in a change of Leu to Ile which confers resistance to APPs and CHDs in the biotype BR(R). The mutation of Gly to Ala on position 2096 within the CT domain causes resistance to APPs only. Also in the A. spica-venti biotype a amino acid change is the responsible resistance mechanism: a change of Pro to Thr at position 197. These sequencing results serve as basis for the development molecular markers. Designed markers based on dCAPS technology. Such markers were developed to detect SNPs which can cause amino acid changes on the constitutive enzymes. Developed markers can rather differentiate between heterozygous and homozygous resistant alleles. Their technology is based on the fact that restriction endonucleases can cut DNA strands on specific recognition sites. This fact can be used for developing markers which are cutting the DNA in a previously generated PCR fragment on the mutation or wild-type sites, respectively. If there is no recognition site, it can be implemented by specific primers during the PCR. By these markers suspicious samples can be analysed and the results give an advice for management strategies, because target- and non-target-site resistance need different controlling strategies. Investigations on the spatial and temporal distribution of weed populations where carried out on an arable field, invested with herbicide resistant A. myosuroides. Collected and analysed leave samples give information about the spatial dynamics of homozygous, heterozygous and sensitive plants in the field. Results show that the distribution of resistant plants depends on the weed density. Besides the weeds are distributed heterogeneous on the field and occur in patches that are persistent over several years. This example revealed that herbicide resistance is rather associated with crop cultivation measurements. Changes in herbicidal and cultivation measurements shall be practiced to control and to prevent the occurrence of herbicide resistant grass weeds.Publication Mapping of quantitative-trait loci (QTL) for adult-plant resistance to Septoria tritici in five wheat populations (Triticum aestivum L.)(2010) Risser, Peter; Miedaner, ThomasSeptoria tritici blotch (STB), caused by Septoria tritici (teleomorph Mycosphaerella graminicola), is one of the most important diseases in wheat varieties worldwide, responsible for severe damage of the leaves causing yield losses between 30 and 40 %. Control of STB includes crop rotation, soil tillage, fungicide application, and cultivation of resistant varieties. Profit-making wheat growers are forced to apply narrow crop rotations under reduced tillage. Some fungicides including widely-used strobilurins are no longer effective due to mutations in the highly variable pathogen population of S. tritici. Therefore, resistance breeding using genetic mapping to identify quantitative-trait loci (QTL) associated with STB resistance provides a promising strategy for controlling the disease. The main goal of this study was to detect chromosomal regions for quantitative adult-plant resistance of winter wheat to STB. Besides this, we analyzed the genetic diversity of 24 European varieties after inoculation with four different isolates of S. tritici. Multienvironmental field trials inoculated with S. tritici were applied to test isolates and varieties and to phenotype mapping populations. In detail, the objectives were to (1) compare natural infection and inoculation, (2) evaluate genotypic variation of adult-plant resistance to STB in European varieties, (3) analyze genotype x environment (G x E) interaction, (4) evaluate and analyze phenotypic data including STB severity, heading date (HED), and plant height (PLH) of five mapping populations, (5) construct genetic linkage maps of these populations using AFLP, DArT, and SSR markers, (6) determine number, positions, and genetic effects of QTL for evaluated traits, and (7) reveal QTL regions for multiple-disease resistance within mapping populations using QTL meta-analysis. In all trials, inoculation with one to four preselected isolates was performed and STB severity was visually scored plotwise as percentage coverage of flag leaves with lesions bearing pycnidia. 24 winter wheat varieties were chosen with maximal differentiation in resistance to STB and evaluated across three years including nine environments. Five mapping populations, Florett/Biscay, Tuareg/Biscay, History/Rubens, Arina/Forno, and Solitär/Bussard, each comprising a cross of a resistant and a susceptible variety, with population sizes ranging from 81 to 316, were phenotyped across four to six environments. In parallel, 221 to 491 polymorphic genetic markers were assigned to linkage groups covering 1,314 to 3,305 cM of the genome. Based on these linkage maps, the number, positions, and genetic effects of QTL could be determined by composite interval mapping. Furthermore, raw data of different experiments evaluated for resistance to two other pathogens, Fusarium head blight and Stagnospora glume blotch, were used to reveal multiple-disease resistance QTL within Arina/Forno and History/Rubens populations by the software package PLABMQTL. Results of inoculated field trials coincided with not inoculated trials showing natural infection (r = 0.84 to 0.99, P < 0.01), thus inoculation method was accurate to evaluate STB severity in the field. Genotypic variation between 24 varieties ranged from 8 % (Solitär) to 63 % (Rubens) flag leaf area infected. In the analysis of variance, genotypic variance had highest impact followed by G x E interaction (P < 0.01). Therefore, environmental stability of varieties should be a major breeding goal. The varieties Solitär, History, and Florett were most stable, as revealed by a regression approach. In contrast, disease symptoms of Biscay ranged from 19 to 72 % within the three experimental years. Phenotypic data revealed significant (P < 0.01) genotypic differentiation for STB, HED, and PLH within all five mapping populations and between the parents. Entry-mean heritabilities (h²) ranged from 0.69 to 0.87 for STB, the only exception was Tuareg/Biscay (h² = 0.38). For HED (h² = 0.78 to 0.93) and PLH (h² = 0.92 to 0.98) heritabilities were high. All correlations between STB and HED (r = -0.18 to -0.33) as well as between STB and PLH (r = -0.13 to -0.45) were negative and moderate. The exception was History/Rubens which is segregating at the Rht-D1 locus showing considerably higher correlation between STB and PLH (r = -0.55, P < 0.01). The five mapping populations showed a wide and continuous distribution of mean STB severity averaged across three to six environments in field trials at adult-plant stage. In QTL analysis, one to nine, zero to nine, and four to eleven QTL were detected for STB, HED, and PLH, respectively, across five wheat populations using composite interval mapping. One to two major QTL for resistance to STB were detected consistently across environments in each population (QStb.lsa_fb-3B, QStb.lsa_fb-6D, QStb.lsa_tb-4B, QStb.lsa_tb-6B, QStb.lsa_hr-4D, QStb.lsa_hr-5B.1, QStb.lsa_af-3B, QStb.lsa_bs-7A) explaining more than 10 % of normalized adjusted phenotypic variance. Altogether, resistance QTL explained 14 to 55 % of adjusted phenotypic variance. Both parents contributed resistant alleles. Major QTL, however, were all from the resistant parent. QTL meta-analysis revealed each of four loci for multiple-disease resistance located on chromosomes 3B, 4B, 5B, and 6D in Arina/Forno, and on chromosomes 2B, 4D, 5B, and 7B in History/Rubens. The most effective meta QTL was on chromosome 4D in History/Rubens closely linked to Rht-D1. The resistance allele from History reduced disease severity by 9.8 % for STB and 6.3 % for FHB, thus explaining 47 % and 60 % of partial phenotypic variance. In general, European wheat varieties showed a wide range of genotypic variation for STB resistance useful for breeding. Although the influence of environment and G x E interaction was high, some resistant varieties which were stable across multiple environments were found (Solitär, History, Florett). Genomic regions associated with STB resistance were mapped across 13 out of 21 wheat chromosomes. Together with the continuous distribution of five segregating populations for flag leaf infection, it can be concluded that the adult-plant resistance to S. tritici was inherited quantitatively depending on several loci explaining part of phenotypic variance. QTL meta-analysis across three severe pathogens, including Fusarium head blight, Stagnospora glume blotch, and STB, within two populations revealed eight loci for multiple-disease resistance with closely linked markers applicable in resistance breeding. Combining detected major QTL as well as meta QTL in present breeding material by applying marker-assisted selection seems a promising approach to the breeding of varieties with improved resistance to Septoria tritici blotch, Fusarium head blight, and Stagnospora glume blotch.Publication Morphological and chemical plant properties mediate host plant selection of whiteflies (Hemiptera: Aleyrodidae)(2021) Stoll, Nina Sara; Zebitz, Claus P. W.Whiteflies are among the most important pests causing severe damage to numerous cultivated and ornamental plants worldwide. The present dissertation comprises four studies and contributes to the knowledge of the host plant selection process by whiteflies. In the first study, host preferences were determined in dual choice tests for Aleyrodes proletella (L.), Bemisia tabaci (Genn.), and Trialeurodes vaporariorum (Westw.) on several host plants. On the one hand, this study extends the knowledge on the food spectrum of these economically important pests; on the other hand, the results highlight the host adaptation of whiteflies. The second study elucidated potential sources of host plant resistance against A. proletella, B. tabaci, and T. vaporariorum by recording their probing and feeding behaviour on two host plants each using the electrical penetration graph (EPG) method. It is concluded that whiteflies decide upon host plant acceptance by evaluation of multiple plant factors located in epidermal and/or mesophyll tissues of leaves as well as in the phloem sap of plants. Moreover, epicuticular leaf waxes are a key factor in the host selection process of A. proletella. It is hypothesized that constituents of the leaf surface wax act as stimulants promoting leaf penetration and phloem accession. The findings of this study shed light on the whitefly-host adaptation. The goal of the third study was to identify the role of epicuticular leaf waxes of several Brassica cultivars in the host selection process of A. proletella. For this purpose, dual choice tests were carried out on both waxy and dewaxed plant leaves as well as on Parafilm® treated with different leaf wax extracts. Also, life-history traits were monitored on waxy and dewaxed leaves, and the feeding activity of A. proletella was recorded on Parafilm® with and without leaf wax extracts. Scanning electron microscopy (SEM) imaging was used to visualize epicuticular leaf waxes on the plant surface. Finally, it was proved that leaf surface waxes of host plants promote feeding and act as phagostimulants. Although the wax compounds mediating host plant selection remain unknown, these findings offer breeding potential for resistant crop cultivars. In the fourth study, the influence of free phloem amino acids on the host plant selection of T. vaporariorum was investigated. Via liquid chromatography-mass spectrometry (LC-MS), the amino acid profiles in the phloem sap of six vegetable crops varying in their host plant attractiveness were analysed. Subsequently, stepwise multiple regressions of the relative amino acid compositions and the pre-determined host plant preferences were performed. To verify the contribution of single amino acids on host choice, dual choice tests on sucrose media with and without added single amino acids were carried out. Single amino acids play an active role in phagostimulation, whereas some amino acids exert strong inhibitory effects. This indicates that the dominant presence of such amino acids might reduce phloem sap uptake, thus contributing to host plant resistance towards T. vaporariorum. Overall, this research compared the host selection process of three whitefly species to identify their underlying mechanisms. It is hypothesized that the observed host selection strategies are the result of evolutionary adaptations between whiteflies and their host plants. Depending on the occupied ecological niche, species-specific host plant ranges of varying complexity were formed. Accordingly, the host selection process of the more specialised species A. proletella is particularly efficient by consideration of characteristic leaf surface wax stimuli. In contrast, host selection of the extreme generalists B. tabaci and T. vaporariorum is regulated by simple gustatory stimuli in order to take advantage of the host diversity they are offered. The findings of this research provide the basis for new approaches to optimizing breeding programs for whitefly resistant crops.Publication Population genomics of herbicide resistance in Alopecurus myosuroides(2022) Kersten, Sonja; Schmid, Karl J.Over the past 50 years, herbicides have often replaced mechanical and manual human weed control, thus representing a major factor in yield productivity in modern agriculture. Herbicide applications, however, exert strong selection pressures on weeds. As a consequence, these species have developed herbicide resistance through adaptive, beneficial alleles that increase in number to ensure the persistence of the populations, a phenomenon known as evolutionary rescue. A major research question is whether herbicide resistance adaptation is more likely to arise from standing genetic variation that was present before the onset of herbicide selection or from de novo mutations that arose after herbicide selection began. To address this question, I focused on target-site resistance (TSR) point mutations, which cause a lower binding affinity to the target protein of the respective herbicides. I first investigated the diversity of TSR haplotypes in populations of the grass species Alopecurus myosuroides (common name: blackgrass), and compared it with the TSR diversity outcome of simulated populations under both evolutionary scenarios. I first conducted a population genetics study of A. myosuroides, which is the most problematic weed in winter cereals across the European continent due to rapid resistance evolution. To obtain genome-wide polymorphic markers, I adapted a restriction site-associated DNA sequencing protocol to this species. I began by analyzing the diversity and population structure in a smaller local South German collection. The fact that I could differentiate populations on a local scale motivated me to extend the study to a European-wide collection, in which I found clear population structure, albeit with low differentiation and some evidence for admixture across Europe. In addition, I generated highly accurate long-read amplicons from single individuals of two loci, ACETYL-COA CARBOXYLASE (ACCase) and ACETOLACTATE SYNTHASE (ALS), which are the targets of the two main herbicide modes of action used in European cereal crops. I obtained completely phased haplotype information, supporting the analysis of haplotype diversity on a population level. I found a remarkable diversity of beneficial TSR mutations at the field level arising from multiple haplotypes of independent origin, so called soft sweeps. I used this information to perform forward simulations to investigate the evolutionary origin of these mutations. I found evidence that a majority of resistance mutations originated from standing genetic variation. While this at first may appear surprising, it is consistent with very large census and effective population sizes in blackgrass. Since long-read amplicon sequencing of single individuals could be costly and time consuming, I extended the analysis to pools of 150 to 200 individuals from Germany, Belgium, France, the Netherlands and the United Kingdom. By combining the power of a more stringent accuracy criterion in our long-reads and a novel clustering software (PacBio amplicon analysis), I was able to preserve individual haplotype information in pooled samples. Furthermore, in a proof of concept experiment, I was able to recover in our pools most haplotypes previously sequenced in individuals. The amplicon study provides a versatile workflow that can be easily adapted to any gene of interest in different species. In conclusion, I found that many A. myosuroides populations likely already have the genetic prerequisites not only for rapid evolution of resistance to currently used herbicides, but also to herbicides that have not yet been brought to market.Publication Study of the natural resistance towards apple proliferation disease and establishment of an in vitro resistance screening system in view of the development of resistant apple rootstocks(2007) Bisognin, Claudia; Reustle, GötzApple proliferation (AP) is an economically important disease of apple which occurs in all countries of central and southern Europe. All currently grown cultivars and rootstocks are susceptible to the disease and no curative treatments are applicable. AP is caused by a phytoplasma, Candidatus Phytoplasma mali, which is restricted to the phloematic tissue of the plant. Ca. P. mali is naturally spread by psyllid vectors and by root bridges as well as by man through infected planting material. An efficient control of the disease is hampered by these different ways of transmission. The objective of the thesis was therefore to evaluate a strategy for a long-term solution to AP based on natural resistance. This resistance has been detected in the wild apomictic species Malus sieboldii and in first and second generation hybrids of M. sieboldii. Although the obtained progeny turned out to be too vigorous for modern apple culture, a certain number of genotypes remained resistant to AP. While phytoplasmas colonise constantly the roots of infected trees, infections in the susceptible cultivar are eliminated each year during the renewal of the phloem in early spring. A resistance strategy towards AP can therefore be solely based on AP-resistant rootstocks in order to prevent the re-colonisation of the canopy in spring. The first part of the thesis was concentrated on the re-evaluation of the AP resistance in M. sieboldii and its hybrids in a 12-years field trial under natural infection pressure at BBA Dossenheim. The annual data for symptom recording and fruit size were analysed as cumulative disease index and cumulative undersized fruit index, respectively. By the end of the trial the phytoplasma concentration in roots and shoots was analysed by quantitative real-time PCR. The results confirmed previous data that M. sieboldii and its hybrids exhibit resistance towards AP. Infected trees of these genotypes had low concentrations of phytoplasmas in the roots and showed almost no symptoms and no undersized fruits. Contrary, previously as resistant classified genotypes derived from M. sargentii reacted highly susceptible. As individual trees of the resistant genotypes showed an altered behaviour, molecular analyses were performed to verify if the seed propagated, apomictic material used for the trial was really true-to-type. For this analysis, co-dominant microsatellite (SSR) markers were used which were derived from published work. However, for each M. sieboldii genotype suitable, polymorphic markers had to be selected. This analysis revealed that apomixis was not complete and that a varying percentage of progeny of the different genotypes was recombinant due to open pollination. As the resistant M. sieboldii genotypes were too vigorous for modern apple culture, new breedings were carried out with these genotypes in combination with dwarfing rootstock genotypes such as M9. More than 3.000 seedlings have been produced in 17 cross combinations. All seedlings were examined by microsatellite analysis in order to distinguish recombinant from non-recombinant, apomictic progeny. SSR markers were also useful in determining the ploidy level of the parents and their progenies. These results were confirmed by flow cytometric analysis. The recombinant progeny is currently being evaluated in the field for its AP resistance. As the screening of resistance towards AP in the field necessitates several years of observation, an alternative in vitro method was developed. This method is based on in vitro graft-inoculation of the genotype to test. As a prerequisite in vitro cultures of all parental genotypes of the breeding program were established. For each genotype the optimal culture medium was defined. Thus, efficient micropropagation and in vitro rooting protocols were established for the M. sieboldii genotypes which are difficult to root under normal nursery conditions. The established protocols enable a large scale production of these genotypes on a commercial scale. The in vitro resistance screening method allows the evaluation of a given genotype under standardized conditions by using repetitions of micro-grafts. The quality of the grafts, the mortality, the transmission rates of the phytoplasmas as well as the concentration of the phytoplasmas in the inoculated genotypes was determined. The results obtained by qPCR showed that the phytoplasma concentration in resistant genotypes was significantly lower than in susceptible ones. Whereas susceptible genotypes exhibited stunted growth and proliferation symptoms in vitro the resistant genotypes had a phenotype almost comparable to the healthy control. Interestingly, significant differences in phytoplasma concentration could be found between two different Ca. P. mali subtypes used in the experiments. The results demonstrated that the method enables a reliable result 3 months p.i. and can be used to evaluate the virulence of different Ca. P. mali strains.Publication Weinblattmetabolite als Resistenzmarker für eine Plasmopara viticola Widerstandsfähigkeit(2024) Grünwald, Maike; Vögele, RalfDowny mildew of grapevine is one of the most important diseases of the European grapevine Vitis vinifera LINNÉ supsp. vinifera. It is caused by the obligate biotrophic oomycete Plasmopara viticola Berl. & De Toni. American grapevines are largely resistant to downy mildew and may contribute in to the protection of susceptible vines against P. viticola. Therefore, this work deals with the metabolite profiling of resistance markers (RM) from volatile secondary metabolites of susceptible and resistant grapevines. 10 genotypes with different resistance to P. viticola were analysed. 3 different Vitis species (V. vinifera, V. riparia, V. labrusca) and some hybrid vines were analysed. The constitutive markers of 3 developmental stages (BBCH6, BBCH8, BBCH9) were determined. In addition, induced markers were analysed. Furthermore, the relationship between leaf position and the occurrence of RM was investigated. The used metabolomic methods were also applied to identify markers for leaf position. For metabolite profiling the grape leaves were analysed using GC-MS and were evaluated using non-targeted and targeted analytical methods. The comparison of the metabolite profiles showed that the developmental stage has the strongest influence on the metabolite profile and the influence of the leaf position is so small that it can be neglected. A total of 41 constitutive RMs were identified. The metabolites identified came from the substance classes of green leaf volatiles (GLV), norisoprenoids, benzoate derivatives, monoterpenoids, a furan and a sesquiterpene. It was elaborated, that GLV, norisoprenoids, benzoate derivatives and 2-ethylfuran were almost exclusively present in higher concentrations in resistant genotypes. Monoterpenoids and the sesquiterpene calacorene were mainly detected in higher concentrations in the susceptible genotypes of V. vinifera. Furthermore, it could be shown, that monoterpenoids were detected in significantly increased concentrations at the developmental stage BBCH6 in the susceptible V. vinifera. calacorene was never detected in BBCH6. It was only found in significantly increased concentrations in the later developmental stages of V. vinifera. GLVs are RM in the resistant genotypes such as V. labrusca and occur here exclusively at the later developmental stages, mainly at BBCH9. For the constitutive RMs from the classes of norisoprenoids, benzoate derivatives and furan, no dependence of the developmental stages and their occurrence was observed. 3 other metabolites were identified as RMs that showed a strong correlation with the developmental stage. They appeared initially in BBCH6 in significantly increased concentrations in susceptible V. vinifera, but in BBCH9 they showed significantly increased concentrations in the resistant V. labrusca genotypes. These RMs with changing correlation were geranyl acetone, terpineol, and (Z)-3-hexenal. The correlation between occurrence of the constitutive RMs and the developmental stages has not been described before. It is a new finding of this work that monoterpenoids occur as RMs in grapevines mainly at BBCH6 and GLV as well as sesquiterpenes were found as RMs mainly at BBCH9. Norisoprenoids, benzoate derivatives and furan occurred as RMs at all developmental stages tested. Furthermore, terpenoids occurred species-specifically more frequently in V. vinifera as constitutive RMs, whereas the furan 2-ethylfuran never appeared as a RM in V. vinifera. Benzoate derivatives and GLVs were most frequently detected as RMs in V. labrusca genotypes. Norisoprenoids appeared most frequently, but not exclusively, as RMs in V. riparia. The correlation between the occurrence of norisoprenoids as RMs and species specificity to V. riparia is a new finding of this work. Nevertheless, it should be briefly mentioned, that this species specificity refers exclusively to the classification as a constitutive RM. Monoterpenes are also part of the metabolite profile of V. labrusca as well as norisoprenoids are important flavour compounds in quality wines. 24 induced RMs were determined. Most of the induced RMs occurred in the fungus-resistant cultivar Regent and only six induced RMs in the resistant V. labrusca hybrid Blue Isabella and in V. riparia. For all RMs identified, it was searched for reports on bioactivity in publications. For 2-ethylfuran, an isomer mix of (Z)- and (E)-ocimene as well as cyclocitral, an inhibitory effect on P. viticola has already been published. Still, 20 compounds have been associated here for the first time with a resistance response to P. viticola infection. These are theaspirane, (E)-damascone, (E)-damascenone, dihydroedulan I, megastigmatrienone, sulcatone, carvomenthenal A, nonanol , (Z)-3-hexenyl acetate, p-cymenene, p-cymene, limonene, alloocimene, myrcene, citronellol, hotrienol, (Z)-rose oxide, geranium oxide and calacorene.