Browsing by Subject "Sunflower"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Publication Generation of high oleic acid sunflower lines using gamma radiation mutagenesis and high-throughput fatty acid profiling(2023) Rozhon, Wilfried; Ramirez, Veronica E.; Wieckhorst, Silke; Hahn, Volker; Poppenberger, BrigitteSunflower (Helianthus annuus L.) is the second most important oil seed crop in Europe. The seeds are used as confection seeds and, more importantly, to generate an edible vegetable oil, which in normal varieties is rich in the polyunsaturated fatty acid linoleic acid. Linoleic acid is biosynthesized from oleic acid through activity of the oleate desaturase FATTY ACID DESATURASE 2 (FAD2), which in seeds is encoded by FAD2-1, a gene that’s present in single copy in sunflowers. Defective FAD2-1 expression enriches oleic acid, yielding the high oleic (HO) acid trait, which is of great interest in oil seed crops, since HO oil bears benefits for both food and non-food applications. Chemical mutagenesis has previously been used to generate sunflower mutants with reduced FAD2-1 expression and here it was aimed to produce further genetic material in which FAD2-1 activity is lost and the HO trait is stably expressed. For this purpose, a sunflower mutant population was created using gamma irradiation and screened for fad2-1 mutants with a newly developed HPLC-based fatty-acid profiling system that’s suitable for high-throughput analyses. With this approach fad2-1 knock-out mutants could be isolated, which stably hyper-accumulate oleic acid in concentrations of 85-90% of the total fatty acid pool. The genetic nature of these new sunflower lines was characterized and will facilitate marker development, for the rapid introgression of the trait into elite sunflower breeding material.Publication Molekulare und entwicklungsbiologische Charakterisierung von Schlüsselenzymen der Naturstoffbiosynthese in Drüsenhaaren der Sonnenblume(2008) Göpfert, Jens C.; Spring, OtmarGlandular trichomes from anther appendages of sunflower were collected and their RNA was isolated. Sequence comparison with known plant sesquiterpene synthases was used to identify sunflower synthases in RT-PCR reactions. Three enzymes, HaGAS1, HaGAS2 and HaCS with high similarities to already characterized sesquiterpene synthases were identified. Their nucleotide sequences were completely established on the genomic level and as RNA transcripts. The nucleotide sequences as well as the deduced amino acid sequences showed typical characteristics of terpene synthases. In order to characterize the enzymes, the sesquiterpene synthase genes were cloned and expressed in E. coli. In vitro assays with the recombinant enzymes were carried out using the native substrate farnesyldiphosphate. The resulting products were extracted and analysed by GC-MS. They were identified by comparison of data base MS-data and using reference samples under identical analytical conditions. Two expressed enzymes, HaGAS1 and HaGAS2, synthesized germacrene A as a single product. Heterologous in vivo expression of both germacrene A-synthases in S. cerevisiae confirmed the in vitro result, since the analysis of the synthesized product showed a single germacrene A peak. Due to a very low in vitro activity of HaCS, the products of the third synthase could not be directly determined by MS-analysis. Therefore, the enzyme was expressed as a thioredoxin-fusion protein in vivo in transgenic yeast. This attempt resulted in a much higher rate of product yield. Two main and at least six minor products were traced in GC-analysis. They were confirmed as sesquiterpene hydrocarbons by GC-MS analysis. One of the two main products was identified as gamma-cadinene, whereas the second main peak could not be determined conclusively. Among the minor compounds alpha-copaene, alpha-muurolene und beta-caryophyllene were identified. Screening of a H. annuus EST library (established at the Berkeley Center for Synthetic Biology, University of California, Berkeley, USA) from mRNA of trichomes revealed the presence of a cytochrome P450 protein which showed high similarity to an Artemisia annua enzyme involved in artemisinic acid biosynthesis. This enzyme and another similar protein from Lactuca sativa were cloned and coexpressed with the germacrene A-synthase HaGAS2 in yeast. The resulting product was indirectly determined as germacrene A carboxylic acid using GC-MS analysis. These novel cytochrome P450 enzymes from sunflower and lettuce can be characterized as multifunctional germacrene A-monooxygenases. They catalyse a three-step oxidation leading from germacrene A to germacrene A carboxylic acid. This oxidation process represents an essential step towards the biosynthesis of sesquiterpene lactones. Semiquantitative RT-PCR analysis demonstrated that the expression of all three sesquiterpene synthases and the sunflower P450 monooxygenase occurred directly within trichome cells. The expression was highly upregulated during the secretory stage of the capitate glandular trichomes. This developmentally regulated expression was shown for the first time in trichomes. Additionally to sesquiterpene synthase activity in trichomes of anthers and leaves, it also was detected in sunflower roots. In addition, 5-deoxynevadensin was identified as a new constituent of the glandular trichomes of sunflower. This 5-deoxy-flavone is responsible for the bright blue fluorescence of sunflower trichomes detected by fluorescence microscopy. The newly identified component may act as protectant for the STL against UV-degradation.Publication Neue Cytochrom P450 Enzyme des Sesquiterpenlacton Stoffwechsels der Sonnenblume (Helianthus annuus L.)(2016) Frey, Maximilian; Spring, OtmarIn the present work additional steps towards the elucidation of the biosynthetic pathway of H. annuus sesquiterpene lactones (STL) were achieved. Firstly candidate sequences were retrieved from a transcriptome database by filtering according to expression pattern and similarity to P450 enzymes known to participate in STL biosynthetic pathways. Open reading frames (ORFs) were obtained using 3´-and 5´-RACE-PCR. Previously described and newly identified candidate genes were then transformed in yeast vectors and expressed in combination with different substrate vectors. A high throughput micro approach was developed that allowed the expression and analysis of many yeast strains at the same time. For the transient expression in N. benthamiana the genes of known and putative enzymes were introduced via Agrobacterium mediated transformation. Using the in planta expression system the complete STL pathway of sunflower to costunolide was reconstructed de novo in a step-by-step approach. Previously described Michael-addition reactions of α-methylene-γ-lactone type STL to the thiol group of cysteine or glutathione in tobacco expression systems could be observed for all STL investigated. Chemically synthesized STL adducts were used as reference for the identification of in planta produced STL adducts. Enzyme characterization was conducted in two different in vivo expression systems, in yeast (Saccharomyces cervisiae) and tobacco (Nicotiana benthamiana). For the investigated biosynthetic pathway, differences between these two expression systems were discussed. Candidate gene M4 showed an unexpected product in yeast (farnesyl-δ-lactone) and led in combination with HaG8H to the production of costunolide. In the plant expression system, germacrene A acid was converted to costunolide by M4 in the absence of HaG8H. In both cases, M4 was involved in the synthesis of costunolide and should therefore be assigned Helianthus annuus costunolide synthase the underlying reaction mechanism should however be investigated more thoroughly. Helianthus annuus costunolide 14-hydroxylase HaC14H (candidate M33) was characterized in yeast and tobacco. A classification into subfamily CYP71CB, together with Tp8878 the Tanacetum parthenium costunolide/parthenolide 3β-hydroxylase is proposed. It was shown that in planta the main product of HaG8H exists most likely as inunolide, which would be the entry point for the biosynthesis of 8-epixanthatine and tomentosine. Candidate S2 from Ikezawa et al. (2011) was found to convert 8β-hydroxy-germacrene A acid to 8β-hydroxy-costunolide (eupatolide) in tobacco, but not in yeast, producing several byproducts. The name Helianthus annuus eupatolide synthase HaES is proposed accordingly. HaES has 47 % amino acid identity to the parthenolide synthase from T. parthenium (TpPTS). A classification into a new CYP71 subfamily is proposed. Two alternative metabolic routes led to 8β-hydroxy-costunolide in the expression studies in tobacco, the underlying mechanisms are discussed. Enzymes involved in STL biosynthesis were expressed in inner tissues of young Helianthus annuus plants; the induction of expression of STL biosynthesis enzymes in leaf primordia correlates with the development of capitate glandular trichomes (CGT) and STL synthesis. HaC14H was found in a chromosomal region in proximity to several P450 enzyme candidates, that share the same subfamily and the expression in capitate glandular trichomes (CGT). Therefore involvement of these enzymes in later steps of the biosynthesis of the elaborate STL structures found in CGT is likely.Publication Socio-economic evaluation of sunflower agri-food chains in Brazil in view of the potential implementation of innovative plant protein ingredients for human consumption(2018) Sousa, Lucas Oliveira de; Berger, ThomasThis study aimed at performing a socio-economic analysis of an agri-food chain focused on a non-established crop in view of the potential implementation of food innovations, using sunflower agri-food chains in Brazil and upcoming sunflower high-quality food protein ingredients as a case study. Thus, fieldwork was carried out in the main sunflower-producing areas between April and August 2016 for data collection among sunflower chain agents from the input, farming, and processing segments, besides representatives from the research sector. Section 1 applied a multiple case study embedded design to describe and analyze the dynamics of operation of sunflower agri-food chains in Brazil. The analysis followed a theory-driven approach based on concepts from transaction costs economics and the social network approach. The findings indicated an environment of high transaction costs, in which the economic transactions are ruled by formal and relational governance structures, and made possible through knowledge diffusion, under the coordination of a processing company. Nevertheless, the sustainable long-term operation of the sunflower chains is constrained by typical limitations of non-established crops, such as restricted market structure, land use competition with well-established crops, and technological limitations regarding plant breeding, and control of pests and diseases. Moreover, Section 1 revealed that a farmer-led sunflower chain in the state of Mato Grosso (MT) stood out regarding the operational stability, suggesting a closer analysis of this farmers’ collective endeavor, which was performed in the subsequent section. Thus, Section 2 adopted a single case study embedded design to describe and analyze the establishment process of the leading Brazilian sunflower agri-food chain located in MT under the regime of farmers. The analysis followed a framework that regarded the agri-food chain establishment as an entrepreneurial process. The findings indicated that the process of establishment of this sunflower chain has been a complex social-economic endeavor stemming from a set of interconnected driving forces composed of entrepreneurial skills, social network, resource availability, and crop suitability. Furthermore, Section 2 suggested the existence of a supportive institutional environment for the establishment of new sunflower agri-food chains in MT among soybean farmers, besides indicating the need of examining the potential for sunflower production expansion in MT, which was the focus of the next section. Thus, Section 3 applied an integrated assessment approach that combines an agent-based model (ABM) with a crop growth model to investigate the potential for sunflower land use expansion in double-cropping systems prevailing in MT. The ABM was implemented using the software package Mathematical Programming-based Multi-Agent Systems (MPMAS), and the crop yields simulations were implemented using the process-based model for nitrogen and carbon in agro-ecosystems (MONICA). The findings indicated the existence of a potential for the expansion of the sunflower production in MT. Nevertheless, this potential is constrained by the distance between the producing areas and the processing facilities. Moreover, the simulations confirmed the land use competition between sunflower and maize, showing that sunflower land use is strongly associated with agents’ expectations regarding prices and yields of sunflower and maize. However, the results also revealed a complementary effect between these two crops due to the different water deficit tolerance of these crops. Section 3 also highlighted that the simulated potential production of sunflower would require further increases in the current processing capacity installed in MT. To conclude, the analyses performed in Sections 1, 2, and 3 indicated relevant aspects to be considered by innovators interested in implementing food innovations related to non-established crops. The scarcity of feedstock suppliers requires the adoption of contractual and relational governance structures coupled with the provision of technical assistance at the farming level. Moreover, farmers with a recognized professional and social reputation as well as leadership abilities play an important role in influencing other farmers to adopt a non-established crop. Finally, the suitability of the crop for the agricultural system prevailing in the region is essential for ensuring a minimum level of farmers’ willingness to adopt a non-established crop. In this regard, particular attention should be given to the land use competition with well-established crops.Publication Sulfate-based fertilizers regulate nutrient uptake, photosynthetic gas exchange, and enzymatic antioxidants to increase sunflower growth and yield under drought stress(2021) Shafiq, Bilal Ahamid; Nawaz, Fahim; Majeed, Sadia; Aurangzaib, Muhammad; Al Mamun, Abdullah; Ahsan, Muhammad; Ahmad, Khawaja Shafique; Shehzad, Muhammad Asif; Ali, Muqarrab; Hashim, Sarfraz; ul Haq, TanveerThe challenging impact of drought to agricultural productivity requires the adoption of mitigation strategies with a better understanding of underlying mechanisms responsible for drought tolerance. The present study aimed at investigating the effects of sulfur-based fertilizers on mitigation of drought stress in sunflower. Sulfate-containing fertilizers, viz., ammonium sulfate, zinc sulfate, magnesium sulfate, potassium sulfate, and gypsum, were initially evaluated at two different rates (10 and 20 mg kg−1 soil equivalent to 20 and 40 kg ha−1, respectively) for nutrient uptake and growth-promoting traits in sunflower seedlings (cv. Hysun-33). The best performing fertilizer (gypsum) was then selected to evaluate the response of sunflower under drought stress imposed at flowering stage for three weeks (25–30% water holding capacity). Results indicated significant amelioration of drought stress with higher activity of photosynthetic apparatus, upregulation of antioxidative enzymes, and increased achene yield by gypsum application. In comparison to control, gypsum-treated plants (20 mg kg−1 soil) exhibited higher water status (32%), leaf photosynthetic rate (29%), transpiration rate (67%), and stomatal conductance (118%) under drought stress. The antioxidant enzyme activities of catalase, guaiacol peroxidase, and superoxide dismutase were also increased by 67%, 62%, and 126%, respectively, resulting in higher achene yield (19%) under water-deficit conditions. This study indicates that the application of sulfur-based fertilizers (gypsum) can be used to induce drought tolerance and obtain high sunflower yields under drought stress, and furthermore, it is a cost-effective strategy resulting in high benefit–cost ratio with respect to no gypsum application.