A new version of this entry is available:
Loading...
Article
2022
UAV remote sensing for high-throughput phenotyping and for yield prediction of Miscanthus by machine learning techniques
UAV remote sensing for high-throughput phenotyping and for yield prediction of Miscanthus by machine learning techniques
Abstract (English)
Miscanthus holds a great potential in the frame of the bioeconomy, and yield prediction can help improve Miscanthus’ logistic supply chain. Breeding programs in several countries are attempting to produce high-yielding Miscanthus hybrids better adapted to different climates and end-uses. Multispectral images acquired from unmanned aerial vehicles (UAVs) in Italy and in the UK in 2021 and 2022 were used to investigate the feasibility of high-throughput phenotyping (HTP) of novel Miscanthus hybrids for yield prediction and crop traits estimation. An intercalibration procedure was performed using simulated data from the PROSAIL model to link vegetation indices (VIs) derived from two different multispectral sensors. The random forest algorithm estimated with good accuracy yield traits (light interception, plant height, green leaf biomass, and standing biomass) using 15 VIs time series, and predicted yield using peak descriptors derived from these VIs time series with root mean square error of 2.3 Mg DM ha−1. The study demonstrates the potential of UAVs’ multispectral images in HTP applications and in yield prediction, providing important information needed to increase sustainable biomass production.
File is subject to an embargo until
This is a correction to:
A correction to this entry is available:
This is a new version of:
Notes
Publication license
Publication series
Published in
Remote sensing, 14 (2022), 12, 2927.
https://doi.org/10.3390/rs14122927.
ISSN: 2072-4292
Faculty
Institute
Examination date
Supervisor
Edition / version
Citation
DOI
ISSN
ISBN
Language
English
Publisher
Publisher place
Classification (DDC)
630 Agriculture
Collections
Original object
Standardized keywords (GND)
Sustainable Development Goals
BibTeX
@article{Impollonia2022,
url = {https://hohpublica.uni-hohenheim.de/handle/123456789/16755},
doi = {10.3390/rs14122927},
author = {Impollonia, Giorgio and Croci, Michele and Ferrarini, Andrea et al.},
title = {UAV Remote Sensing for High-Throughput Phenotyping and for Yield Prediction of Miscanthus by Machine Learning Techniques},
journal = {Remote sensing},
year = {2022},
volume = {14},
number = {12},
}