Price discrimination with inequity-averse consumers : a reinforcement learning approach

dc.contributor.authorBuchali, Katrinde
dc.date.accessioned2024-04-08T09:00:48Z
dc.date.available2024-04-08T09:00:48Z
dc.date.created2021-06-23
dc.date.issued2021
dc.description.abstractWith the advent of big data, unique opportunities arise for data collection and analysis and thus for personalized pricing. We simulate a self-learning algorithm setting personalized prices based on additional information about consumer sensi- tivities in order to analyze market outcomes for consumers who have a preference for fair, equitable outcomes. For this purpose, we compare a situation that does not consider fairness to a situation in which we allow for inequity-averse consumers. We show that the algorithm learns to charge different, revenue-maximizing prices and simultaneously increase fairness in terms of a more homogeneous distribution of prices.en
dc.identifier.swb1761104497
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/6621
dc.identifier.urnurn:nbn:de:bsz:100-opus-19059
dc.language.isoeng
dc.relation.ispartofseriesHohenheim discussion papers in business, economics and social sciences; 2021,02
dc.rights.licensepubl-mit-poden
dc.rights.licensepubl-mit-podde
dc.rights.urihttp://opus.uni-hohenheim.de/doku/lic_mit_pod.php
dc.subjectPricing algorithmen
dc.subjectReinforcement learningen
dc.subjectQ-learningen
dc.subjectPrice discriminationen
dc.subjectFairnessen
dc.subjectInequityen
dc.subject.ddc330
dc.subject.gndPreisdiskriminierungde
dc.subject.gndAlgorithmusde
dc.titlePrice discrimination with inequity-averse consumers : a reinforcement learning approachde
dc.type.dcmiTextde
dc.type.diniWorkingPaperde
local.accessuneingeschränkter Zugriffen
local.accessuneingeschränkter Zugriffde
local.bibliographicCitation.publisherPlaceUniversität Hohenheimde
local.export.bibtex@techreport{Buchali2021, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/6621}, author = {Buchali, Katrin}, title = {Price discrimination with inequity-averse consumers : a reinforcement learning approach}, year = {2021}, school = {Universität Hohenheim}, series = {Hohenheim discussion papers in business, economics and social sciences}, }
local.export.bibtexAuthorBuchali, Katrin
local.export.bibtexKeyBuchali2021
local.export.bibtexType@techreport
local.faculty.number3de
local.institute.number520de
local.opus.number1905
local.series.issueNumber2021,02
local.series.titleHohenheim discussion papers in business, economics and social sciences
local.universityUniversität Hohenheimde
local.university.facultyFaculty of Business, Economics and Social Sciencesen
local.university.facultyFakultät Wirtschafts- und Sozialwissenschaftende
local.university.instituteInstitute for Economicsen
local.university.instituteInstitut für Volkswirtschaftslehrede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dp_02_2021_online.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format
Description:
Open Access Fulltext