Achtung: hohPublica wurde am 18.11.2024 aktualisiert. Falls Sie auf Darstellungsfehler stoßen, löschen Sie bitte Ihren Browser-Cache (Strg + Umschalt + Entf). *** Attention: hohPublica was last updated on November 18, 2024. If you encounter display errors, please delete your browser cache (Ctrl + Shift + Del).
 

A new version of this entry is available:

Abstract (English)

Miscanthus, a C4 perennial rhizomatous grass, is capable of growing in varied climates and soil types in Europe, including on marginal lands. It can produce high yields with low nutrient inputs when harvested after complete senescence. Senescence induction and rate depend on complex genetic, environmental, and management interactions. To explore these interactions, we analysed four miscanthus hybrids (two novel seed‐based hybrids, GRC 3 [Miscanthus sinensis × sinensis] and GRC 14 [M. sacchariflorus × sinensis]; GRC 15, a novel M. sacchariflorus × sinensis clone; and GRC 9, a standard Miscanthus × giganteus clone) in Italy, Croatia, Germany and the UK. Over all trial locations and hybrids, the average aboveground biomass of the 3‐year‐old stands in August 2020 was 15 t DM ha−1 with nutrient contents of 7.6 mg N g−1 and 14.6 mg K g−1. As expected, delaying the harvest until spring reduced overall yield and nutrient contents (12 t DM ha−1, 3.3 mg N g−1, and 5.5 mg K g−1). At lower latitudes, the late‐ripening M. sacchariflorus × sinensis GRC 14 and GRC 15 combined high yields with low nutrient contents. At the most elevated latitude location (UK), the early‐ripening M. sinensis × sinensis combined high biomass yields with low nutrient offtakes. The clonal Miscanthus × giganteus with intermediate flowering and senescence attained similar low nutrient contents by spring harvest at all four locations. Seasonal changes in yield and nutrient levels analysed in this study provide: (1) a first step towards recommending hybrids for specific locations and end uses in Europe; (2) crucial data for determination of harvest time and practical steps in the valorization of biomass; and (3) key sustainability data for life cycle assessments. Identification of trade‐offs resulting from genetic × environment × management interactions is critical for increasing sustainable biomass supply from miscanthus grown on marginal lands.

File is subject to an embargo until

This is a correction to:

A correction to this entry is available:

This is a new version of:

Notes

Publication license

Publication series

Published in

Global change biology. Bioenergy , 14 (2022), 9, 1035-1054. https://doi.org/10.1111/gcbb.12985. ISSN: 1757-1707
Faculty
Institute

Examination date

Supervisor

Edition / version

Citation

DOI

ISSN

ISBN

Language
English

Publisher

Publisher place

Classification (DDC)
630 Agriculture

Original object

Standardized keywords (GND)

Sustainable Development Goals

BibTeX

@article{Magenau2022, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/16573}, doi = {10.1111/gcbb.12985}, author = {Magenau, Elena and Clifton‐Brown, John and Awty‐Carroll, Danny et al.}, title = {Site impacts nutrient translocation efficiency in intraspecies and interspecies miscanthus hybrids on marginal lands}, journal = {Global change biology. Bioenergy }, year = {2022}, volume = {14}, number = {9}, }
Share this publication