Metabolic rewiring enables ammonium assimilation via a non‐canonical fumarate‐based pathway

dc.contributor.authorMardoukhi, Mohammad Saba Yousef
dc.contributor.authorRapp, Johanna
dc.contributor.authorIrisarri, Iker
dc.contributor.authorGunka, Katrin
dc.contributor.authorLink, Hannes
dc.contributor.authorMarienhagen, Jan
dc.contributor.authorde Vries, Jan
dc.contributor.authorStülke, Jörg
dc.contributor.authorCommichau, Fabian M.
dc.date.accessioned2024-10-07T12:58:33Z
dc.date.available2024-10-07T12:58:33Z
dc.date.issued2024
dc.date.updated2024-06-27T03:39:27Z
dc.description.abstractGlutamate serves as the major cellular amino group donor. In Bacillus subtilis, glutamate is synthesized by the combined action of the glutamine synthetase and the glutamate synthase (GOGAT). The glutamate dehydrogenases are devoted to glutamate degradation in vivo. To keep the cellular glutamate concentration high, the genes and the encoded enzymes involved in glutamate biosynthesis and degradation need to be tightly regulated depending on the available carbon and nitrogen sources. Serendipitously, we found that the inactivation of the ansR and citG genes encoding the repressor of the ansAB genes and the fumarase, respectively, enables the GOGAT-deficient B. subtilis mutant to synthesize glutamate via a non-canonical fumarate-based ammonium assimilation pathway. We also show that the de-repression of the ansAB genes is sufficient to restore aspartate prototrophy of an aspB aspartate transaminase mutant. Moreover, in the presence of arginine, B. subtilis mutants lacking fumarase activity show a growth defect that can be relieved by aspB overexpression, by reducing arginine uptake and by decreasing the metabolic flux through the TCA cycle.en
dc.identifier.urihttps://doi.org/10.1111/1751-7915.14429
dc.identifier.urihttps://hohpublica.uni-hohenheim.de/handle/123456789/15894
dc.language.isoeng
dc.relation.ispartofMicrobial biotechnologyen
dc.rights.licensecc_by
dc.source1751-7915
dc.sourceMicrobial biotechnology; Vol. 17, No. 3 (2024), e14429
dc.subjectGlutamate metabolism
dc.subjectBacillus subtilis
dc.subjectGene regulation
dc.subjectGlutamate degradation
dc.subject.ddc570
dc.titleMetabolic rewiring enables ammonium assimilation via a non‐canonical fumarate‐based pathwayen
dc.type.diniArticle
dcterms.bibliographicCitationMicrobial biotechnology, 17 (2024) 3, e14429. https://doi.org/10.1111/1751-7915.14429. ISSN: 1751-7915
dcterms.bibliographicCitation.articlenumbere14429
dcterms.bibliographicCitation.issn1751-7915
dcterms.bibliographicCitation.issue3
dcterms.bibliographicCitation.journaltitleMicrobial biotechnology
dcterms.bibliographicCitation.originalpublishernameWiley-Blackwell
dcterms.bibliographicCitation.originalpublisherplaceOxford
dcterms.bibliographicCitation.volume17
local.export.bibtex@article{Mardoukhi2024, doi = {10.1111/1751-7915.14429}, author = {Mardoukhi, Mohammad Saba Yousef and Rapp, Johanna and Irisarri, Iker et al.}, title = {Metabolic rewiring enables ammonium assimilation via a non‐canonical fumarate‐based pathway}, journal = {Microbial biotechnology}, year = {2024}, volume = {17}, number = {3}, }
local.export.bibtexAuthorMardoukhi, Mohammad Saba Yousef and Rapp, Johanna and Irisarri, Iker et al.
local.export.bibtexKeyMardoukhi2024
local.export.bibtexType@article

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
MBT2_MBT214429.pdf
Size:
21.67 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
mbt214429-sup-0001-supinfo.docx
Size:
7.79 MB
Format:
Microsoft Word XML

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.85 KB
Format:
Item-specific license agreed to upon submission
Description: