Achtung: hohPublica wurde am 18.11.2024 aktualisiert. Falls Sie auf Darstellungsfehler stoßen, löschen Sie bitte Ihren Browser-Cache (Strg + Umschalt + Entf). *** Attention: hohPublica was last updated on November 18, 2024. If you encounter display errors, please delete your browser cache (Ctrl + Shift + Del).
 

A new version of this entry is available:

Loading...
Thumbnail Image

Abstract (English)

With its high water potential, the Ziz basin is one of the most important basins in Morocco. This paper aims to develop a methodology for spatiotemporal monitoring of the water quality of the Hassan Addakhil dam using remote sensing techniques combined with a modeling approach. Firstly, several models were established for the different water quality parameters (nitrate, dissolved oxygen and chlorophyll a) by combining field and satellite data. In a second step, the calibration and validation of the selected models were performed based on the following statistical parameters: compliance index R2, the root mean square error and p-value. Finally, the satellite data were used to carry out spatiotemporal monitoring of the water quality. The field results show excellent quality for most of the samples. In terms of the modeling approach, the selected models for the three parameters (nitrate, dissolved oxygen and chlorophyll a) have shown a good correlation between the measured and estimated values with compliance index values of 0.62, 0.56 and 0.58 and root mean square error values of 0.16 mg/L, 0.65 mg/L and 0.07 µg/L for nitrate, dissolved oxygen and chlorophyll a, respectively. After the calibration, the validation and the selection of the models, the spatiotemporal variation of water quality was determined thanks to the multitemporal satellite data. The results show that this approach is an effective and valid methodology for the modeling and spatiotemporal mapping of water quality in the reservoir of the Hassan Addakhil dam. It can also provide valuable support for decision-makers in water quality monitoring as it can be applied to other regions with similar conditions.

File is subject to an embargo until

This is a correction to:

A correction to this entry is available:

This is a new version of:

Notes

Publication license

Publication series

Published in

Applied sciences, 11 (2021), 19, 9297. https://doi.org/10.3390/app11199297. ISSN: 2076-3417
Faculty
Institute

Examination date

Supervisor

Edition / version

Citation

DOI

ISSN

ISBN

Language
English

Publisher

Publisher place

Classification (DDC)
630 Agriculture

Original object

Standardized keywords (GND)

Sustainable Development Goals

BibTeX

@article{El Ouali2021, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/16887}, doi = {10.3390/app11199297}, author = {El Ouali, Anas and El Hafyani, Mohammed and Roubil, Allal et al.}, title = {Modeling and Spatiotemporal Mapping of Water Quality through Remote Sensing Techniques: A Case Study of the Hassan Addakhil Dam}, journal = {Applied sciences}, year = {2021}, }
Share this publication