A new version of this entry is available:
Loading...
Article
2024
Nematode community structure suggests perennial grain cropping cultivation as a nature‐based solution for resilient agriculture
Nematode community structure suggests perennial grain cropping cultivation as a nature‐based solution for resilient agriculture
Abstract (English)
Introduction: Conventional agricultural land‐use may negatively impact biodiversity and the environment due to the increased disturbances to the soil ecosystem by tillage, for example. Cultivation of the perennial grain intermediate wheatgrass ( Thinopyrum intermedium , IWG, Kernza®) is a nature‐based solution for sustainable agriculture, improving nutrient retention mainly through its extensive root system. Nematodes serve as sensitive bioindicators, detecting early changes in the soil food web, reflecting in changes in their community structure. Materials and Methods: IWG and annual wheat sites in South France, Belgium and South Sweden were investigated in April 2022 for two depths (5–15 cm; 25–35 cm) to evaluate the difference in nematode community structure among the cropping systems. Results: Sites with IWG cultivation held an accumulation of structure indicators (c‐p 3–5 nematodes) compared to sites with annual wheat cultivation. A generalised linear mixed model revealed significantly more root feeders, especially for the subsoil, under IWG as a result of the perennial cultivation. The maturity index, plant‐parasitic index, channel index and structure index were greater for IWG sites. The enrichment index was greater for annual wheat sites due to the dominance of bacterivores and enrichment indicators (c‐p 1 nematodes). The nematode community structure (weighted faunal profile analysis) indicates IWG sites as being a generally undisturbed system with efficient nutrient cycling and balanced distribution of feeding types, as well as higher metabolic footprint values for root feeders (including plant‐parasitic nematodes) and fungivores. Annual wheat sites, on the other hand, held indicators of a disturbed system with increased occurrence of opportunistic species and a more bacterial driven pathway. The topsoil had an increased occurrence of structure indicators in both cropping systems. Conclusion: IWG creates favourable conditions for a diverse food web, including improved nutrient cycling and a heterogeneous resource environment, regardless of climatic conditions, establishing it as a stable and resilient agricultural management system.
File is subject to an embargo until
This is a correction to:
A correction to this entry is available:
This is a new version of:
Other version
Notes
Publication license
Publication series
Published in
Journal of sustainable agriculture and environment, 3 (2024), 3, e12112.
https://doi.org/10.1002/sae2.12112.
ISSN: 2767-035X
Other version
Faculty
Institute
Examination date
Supervisor
Cite this publication
Förster, A., Hohberg, K., Rasche, F., & Emmerling, C. (2024). Nematode community structure suggests perennial grain cropping cultivation as a nature‐based solution for resilient agriculture. Journal of sustainable agriculture and environment, 3(3). https://doi.org/10.1002/sae2.12112
Edition / version
Citation
DOI
ISSN
ISBN
Language
English
Publisher
Publisher place
Classification (DDC)
630 Agriculture
Original object
University bibliography
Standardized keywords (GND)
Sustainable Development Goals
BibTeX
@article{Förster2024,
doi = {10.1002/sae2.12112},
author = {Förster, Alena and Hohberg, Karin and Rasche, Frank et al.},
title = {Nematode community structure suggests perennial grain cropping cultivation as a nature‐based solution for resilient agriculture},
journal = {Journal of Sustainable Agriculture and Environment},
year = {2024},
volume = {3},
number = {3},
pages = {--},
}