Institut für Agrartechnik
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/19
Browse
Browsing Institut für Agrartechnik by Journal "Fermentation"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Biochemical methane potential of a biorefinery’s process-wastewater and its components at different concentrations and temperatures(2022) Khan, Muhammad Tahir; Huelsemann, Benedikt; Krümpel, Johannes; Wüst, Dominik; Oechsner, Hans; Lemmer, AndreasA sustainable circular bioeconomy requires the side streams and byproducts of biorefineries to be assimilated into bioprocesses to produce value-added products. The present study endeavored to utilize such a byproduct generated during the synthesis of 5-hydroxymethylfurfural as a potential feedstock for biogas production. For this purpose, biochemical methane potential tests for the full process-wastewater, its components (5-hydroxymethylfurfural, furfural, levulinic acid, and glycolic acid), together with furfural’s metabolites (furfuryl alcohol and furoic acid), and phenols (syringaldehyde, vanillin, and phenol), were conducted at mesophilic and thermophilic temperatures to assess their biodegradability and gas production kinetics. 0.1, 0.2, 0.3, and 0.4 g COD of the test components were added separately into assays containing 35 mL of inoculum. At their lowest concentrations, the test components, other than the process-wastewater, exhibited a stimulatory effect on methane production at 37 °C, whereas their increased concentrations returned a lower mean specific methane yield at either temperature. For similar component loads, the mesophilic assays outperformed the thermophilic assays for the mean measured specific methane yields. Components that impaired the anaerobic process with their elevated concentrations were phenol, vanillin, and 5-hydroxymethylfurfural. Poor degradation of the process-wastewater was deduced to be linked to the considerable share of 5-hydroxymethylfurfural in the process-wastewater governing its overall characteristics. With excessive recalcitrant components, it is recommended to use such waste streams and byproducts as a substrate for biogas plants operating at moderate temperatures, but at low rates.Publication Characteristics and anaerobic co-digestion of press water from wood fuel preparation and digested sewage sludge(2022) Sailer, Gregor; Empl, Florian; Kuptz, Daniel; Silberhorn, Martin; Ludewig, Darwin; Lesche, Simon; Pelz, Stefan; Müller, JoachimTechnical drying of harvested wood fuels is heat and energy consuming, while natural pre-drying in the forest, e.g., in stacks or storage piles, is accompanied by energy losses through natural degradation processes. Dewatering of energy wood by mechanical pressing is an innovative method to reduce the moisture content prior to thermal drying while producing press waters (PW, also referred to as wood juice) as a by-product. To date, the characteristics and utilization potentials of PW are largely unknown. In this study, three different spruce- and poplar-based PW were analyzed for their characteristics such as dry matter (DM), organic dry matter (oDM) concentration, pH-value, element concentration or chemical compounds. Additionally, they were used for anaerobic digestion (AD) experiments with digested sewage sludge (DSS) serving as inoculum. The fresh matter-based DM concentrations of the PW were between 0.4 and 3.2%, while oDM concentrations were between 87 and 89%DM. The spruce-based PW were characterized by lower pH-values of approx. 4.4, while the poplar-based PW was measured at pH 8. In the AD experiments, DSS alone (blank variant) achieved a specific methane yield of 95 ± 26 mL/goDM, while the mixture of spruce-based PW and DSS achieved up to 160 ± 12 mL/goDM, respectively. With further research, PW from wood fuel preparation offer the potential to be a suitable co-substrate or supplement for AD processes.Publication Fed-batch bioreactor cultivation of Bacillus subtilis using vegetable juice as an alternative carbon source for lipopeptides production: a shift towards a circular bioeconomy(2024) Gugel, Irene; Vahidinasab, Maliheh; Benatto Perino, Elvio Henrique; Hiller, Eric; Marchetti, Filippo; Costa, Stefania; Pfannstiel, Jens; Konnerth, Philipp; Vertuani, Silvia; Manfredini, Stefano; Hausmann, Rudolf; Gugel, Irene; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Vahidinasab, Maliheh; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Benatto Perino, Elvio Henrique; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Hiller, Eric; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Marchetti, Filippo; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Costa, Stefania; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Pfannstiel, Jens; Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, Ottlie-Zeller-Weg 2, 70599 Stuttgart, Germany; Konnerth, Philipp; Department of Conversion Technology of Biobased Resources, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart, Germany;; Vertuani, Silvia; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Manfredini, Stefano; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Hausmann, Rudolf; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Gudiña, EduardoIn a scenario of increasing alarm about food waste due to rapid urbanization, population growth and lifestyle changes, this study aims to explore the valorization of waste from the retail sector as potential substrates for the biotechnological production of biosurfactants. With a perspective of increasingly contributing to the realization of the circular bioeconomy, a vegetable juice, derived from unsold fruits and vegetables, as a carbon source was used to produce lipopeptides such as surfactin and fengycin. The results from the shake flask cultivations revealed that different concentrations of vegetable juice could effectively serve as carbon sources and that the fed-batch bioreactor cultivation strategy allowed the yields of lipopeptides to be significantly increased. In particular, the product/substrate yield of 0.09 g/g for surfactin and 0.85 mg/g for fengycin was obtained with maximum concentrations of 2.77 g/L and 27.53 mg/L after 16 h, respectively. To conclude, this study provides the successful fed-batch cultivation of B. subtilis using waste product as the carbon source to produce secondary metabolites. Therefore, the consumption of agricultural product wastes might be a promising source for producing valuable metabolites which have promising application potential to be used in several fields of biological controls of fungal diseases.Publication Impact of thermo-mechanical pretreatment of sargassum muticum on anaerobic co-digestion with wheat straw(2023) Hütter, Miriam; Sailer, Gregor; Hülsemann, Benedikt; Müller, Joachim; Poetsch, JensSargassum muticum (SM) is an invasive macroalgal species seasonally occurring in large quantities. While generally suitable for anaerobic digestion, recent studies resulted in low specific methane yields (SMYs), presumably due to salt, polyphenol, and high fiber contents of this marine biomass. In this study, the specific biogas yield (SBY) and SMY of SM alone as well as in co-digestion with wheat straw (WS) were investigated in batch tests at process temperatures of 44 ± 1.4 °C with a retention time of approx. 40 d. The pretreatment variants of SM were examined with regard to desalination and disintegration to potentially improve digestibility and to enhance the overall performance in anaerobic digestion. A sole mechanical treatment (pressing) and a thermo-mechanical treatment (heating and pressing) were tested. Batch assays showed that pressing increased the SMY by 15.1% whereas heating and pressing decreased the SMY by 15.7% compared to the untreated variant (87.64 ± 8.72 mL/gVS). Both anaerobic digestion experiments generally showed that co-digestion with WS can be recommended for SM, but the observed SBY and SMY were still similar to those of other studies in which SM was not pretreated. The mechanical pretreatment of SM, however, offers the potential to enhance the SMY in the anaerobic digestion of SM with WS, but further research is necessary to identify the optimum upgrading approaches since the overall SMY of SM is relatively low compared to other substrates that are commonly used in anaerobic digestion. In addition to anaerobic digestion, SM as an already available biomass could also be of interest for further utilization approaches such as fiber production.