Institut für Agrartechnik
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/19
Browse
Recent Submissions
Publication Effects of different ground segmentation methods on the accuracy of UAV-based canopy volume measurements(2024) Han, Leng; Wang, Zhichong; He, Miao; He, Xiongkui; Han, Leng; College of Science, China Agricultural University, Beijing, China; Wang, Zhichong; Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, Stuttgart, Germany; He, Miao; College of Science, China Agricultural University, Beijing, China; He, Xiongkui; College of Science, China Agricultural University, Beijing, ChinaThe nonuniform distribution of fruit tree canopies in space poses a challenge for precision management. In recent years, with the development of Structure from Motion (SFM) technology, unmanned aerial vehicle (UAV) remote sensing has been widely used to measure canopy features in orchards to balance efficiency and accuracy. A pipeline of canopy volume measurement based on UAV remote sensing was developed, in which RGB and digital surface model (DSM) orthophotos were constructed from captured RGB images, and then the canopy was segmented using U-Net, OTSU, and RANSAC methods, and the volume was calculated. The accuracy of the segmentation and the canopy volume measurement were compared. The results show that the U-Net trained with RGB and DSM achieves the best accuracy in the segmentation task, with mean intersection of concatenation (MIoU) of 84.75% and mean pixel accuracy (MPA) of 92.58%. However, in the canopy volume estimation task, the U-Net trained with DSM only achieved the best accuracy with Root mean square error (RMSE) of 0.410 m 3 , relative root mean square error (rRMSE) of 6.40%, and mean absolute percentage error (MAPE) of 4.74%. The deep learning-based segmentation method achieved higher accuracy in both the segmentation task and the canopy volume measurement task. For canopy volumes up to 7.50 m 3 , OTSU and RANSAC achieve an RMSE of 0.521 m 3 and 0.580 m 3 , respectively. Therefore, in the case of manually labeled datasets, the use of U-Net to segment the canopy region can achieve higher accuracy of canopy volume measurement. If it is difficult to cover the cost of data labeling, ground segmentation using partitioned OTSU can yield more accurate canopy volumes than RANSAC.Publication Effect of packaging and storage conditions on the pasting and functional properties of pretreated yellow-fleshed cassava flour(2024) Ekeledo, Esther; Abass, Adebayo; Müller, JoachimCassava is highly susceptible to post harvest physiological deterioration which makes it necessary to initiate processing so as to extend the shelf life. In order to improve and enhance the nutritional characteristics of the processed cassava flour, this research was carried out so as to evaluate the adequate packaging materials and storage conditions necessary for safe storage and good flour quality. Pasting properties of food/flour is an indication of the different applicability of starch-based food ingredients in product development. The effect of packaging materials (cylindric polyvinyl containers and aluminum ziplock pouch bags) on quality attributes of pretreated yellow-fleshed cassava flour (YFCF) samples stored in two storage conditions a (cooling chamber at 5 ◦ C and 30 % relative humidity and; in a climate chamber at 30 ◦C and 50 % relative humidity) was investigated for 8 weeks. Flour samples from each package type were evaluated for water absorption capacity, pasting and oil absorption capacity fortnightly. The treated initial flour sample before storage-sulfured (BSS) had the highest peak viscosity (891 RVU). The low peak time at the end of storage in non-sulfured flours packed in aluminum pouch bags and stored at 5 ◦C is an evidence of time and energy saving capacity. The water absorption capacity of non-sulfured flour samples packed in cylindric polyvinyl containers and the sulfured flour sample packed in an aluminum pouch bag at 30 ◦C increased with storage duration. The aluminum ziplock pouch bags showed excellent storage quality and retained better pasting property. The climatic storage condition revealed better keeping quality. The use of sodium metabisulphite revealed its suitability as a pretreatment tool.Publication Is heat stress a growing problem for dairy cattle husbandry in the temperate regions? A case study of Baden-Württemberg in Germany(2024) Leandro, Miguel António; Stock, Joana; Bennewitz, Jörn; Chagunda, Mizeck G. G.Heat stress with measurable effects in dairy cattle is a growing concern in temperate regions. Heat stress in temperate regions differs between environments with different geophysical characteristics. Microclimates specific to each environment were found to greatly impact at what level heat stress occurs and will occur in the future. The landlocked state of Baden-Württemberg, Germany, provides several different environments, hence, a good case-study. Temperature–Humidity Index (THI) from 17 weather stations for the years 2003 to 2022 was calculated and milking yields from 22 farms for the years 2017 to 2022 were collected. The occurrences and evolving patterns of heat stress were analyzed with the use of a THI, and the effect of heat stress on milk yield was analyzed based on milking records from Automated Milking Systems. Daily average THI was calculated using hourly readings of relative humidity and ambient temperature, disregarding solar radiation and wind, as all animals were permanently stabled. Based on studies conducted in Baden-Württemberg and neighboring regions, cited ahead in the section of THI, THI = 60 was the threshold for heat stress occurrence. Findings show that the heat stress period varied between stations from 64 to 120 d with THI ≥ 60 in a year. This aligns with yearly and summer averages, also steadily increasing from May to September. The length of the heat stress period was found to increase 1 extra day every year. Extreme weather events such as heat waves did not increase the heat stress period of that year in length but increased the average THI. Milk yield was found to be significantly (α = 0.05) different between counties grouped into different zones according to heat stress severity and rate of increase in daily average THI. Future attempts at managing heat stress on dairy cattle farms in the temperate regions should account for microclimate, as geographical proximity does not mean that the increase in heat stress severity will be the same in the 2 neighboring areas.Publication Modeling and spatiotemporal mapping of water quality through remote sensing techniques: A case study of the Hassan Addakhil dam(2021) El Ouali, Anas; El Hafyani, Mohammed; Roubil, Allal; Lahrach, Abderrahim; Essahlaoui, Ali; Hamid, Fatima Ezzahra; Muzirafuti, Anselme; Paraforos, Dimitrios S.; Lanza, Stefania; Randazzo, GiovanniWith its high water potential, the Ziz basin is one of the most important basins in Morocco. This paper aims to develop a methodology for spatiotemporal monitoring of the water quality of the Hassan Addakhil dam using remote sensing techniques combined with a modeling approach. Firstly, several models were established for the different water quality parameters (nitrate, dissolved oxygen and chlorophyll a) by combining field and satellite data. In a second step, the calibration and validation of the selected models were performed based on the following statistical parameters: compliance index R2, the root mean square error and p-value. Finally, the satellite data were used to carry out spatiotemporal monitoring of the water quality. The field results show excellent quality for most of the samples. In terms of the modeling approach, the selected models for the three parameters (nitrate, dissolved oxygen and chlorophyll a) have shown a good correlation between the measured and estimated values with compliance index values of 0.62, 0.56 and 0.58 and root mean square error values of 0.16 mg/L, 0.65 mg/L and 0.07 µg/L for nitrate, dissolved oxygen and chlorophyll a, respectively. After the calibration, the validation and the selection of the models, the spatiotemporal variation of water quality was determined thanks to the multitemporal satellite data. The results show that this approach is an effective and valid methodology for the modeling and spatiotemporal mapping of water quality in the reservoir of the Hassan Addakhil dam. It can also provide valuable support for decision-makers in water quality monitoring as it can be applied to other regions with similar conditions.Publication Lab-scale carbonation of wood ash for CO2-sequestration(2021) Koch, Robin; Sailer, Gregor; Paczkowski, Sebastian; Pelz, Stefan; Poetsch, Jens; Müller, JoachimThis study evaluated the CO2 sequestration potential with combustion ashes in the aqueous phase. The aim was to provide a cost-effective carbon sequestration method for combustion unit operators (flue gas cleaning) or biogas producers (biogas upgrading). Therefore, two separate test series were executed to identify the carbonation efficiency (CE) of bottom wood ash (1) at different mixing ratios with water in batch experiments and (2) under dynamic flow conditions. It was furthermore evaluated whether subsequent use of the carbonated wood ash for soil amendment could be possible and whether the process water could be passed into the sewage. The batch test series showed that different mixing ratios of wood ash and water had an influence on the CE. The flow series showed that the mean CE varied between approximately 14% and 17%. Thus, the ash proved to be suitable for carbonation processes. The process water was dischargeable, and the carbonated wood ash has potential for chalking, as no legal thresholds were exceeded. Therefore, wood ash carbonation could be used as a low-tech CO2 sequestration technology. Compared to existing energy consuming and cost intensive carbon capture and storage technologies, sequestration with ash could be beneficial, as it represents a low-tech approach.Publication Characteristics and anaerobic co-digestion of press water from wood fuel preparation and digested sewage sludge(2022) Sailer, Gregor; Empl, Florian; Kuptz, Daniel; Silberhorn, Martin; Ludewig, Darwin; Lesche, Simon; Pelz, Stefan; Müller, JoachimTechnical drying of harvested wood fuels is heat and energy consuming, while natural pre-drying in the forest, e.g., in stacks or storage piles, is accompanied by energy losses through natural degradation processes. Dewatering of energy wood by mechanical pressing is an innovative method to reduce the moisture content prior to thermal drying while producing press waters (PW, also referred to as wood juice) as a by-product. To date, the characteristics and utilization potentials of PW are largely unknown. In this study, three different spruce- and poplar-based PW were analyzed for their characteristics such as dry matter (DM), organic dry matter (oDM) concentration, pH-value, element concentration or chemical compounds. Additionally, they were used for anaerobic digestion (AD) experiments with digested sewage sludge (DSS) serving as inoculum. The fresh matter-based DM concentrations of the PW were between 0.4 and 3.2%, while oDM concentrations were between 87 and 89%DM. The spruce-based PW were characterized by lower pH-values of approx. 4.4, while the poplar-based PW was measured at pH 8. In the AD experiments, DSS alone (blank variant) achieved a specific methane yield of 95 ± 26 mL/goDM, while the mixture of spruce-based PW and DSS achieved up to 160 ± 12 mL/goDM, respectively. With further research, PW from wood fuel preparation offer the potential to be a suitable co-substrate or supplement for AD processes.Publication Maize characteristics estimation and classification by spectral data under two soil phosphorus levels(2022) Qiao, Baiyu; He, Xiongkui; Liu, Yajia; Zhang, Hao; Zhang, Lanting; Liu, Limin; Reineke, Alice-Jacqueline; Liu, Wenxin; Müller, JoachimAs an essential element, the effect of Phosphorus (P) on plant growth is very significant. In the early growth stage of maize, it has a high sensitivity to the deficiency of phosphorus. The main purpose of this paper is to monitor the maize status under two phosphorus levels in soil by a nondestructive testing method and identify different phosphorus treatments by spectral data. Here, the Analytical Spectral Devices (ASD) spectrometer was used to obtain canopy spectral data of 30 maize inbred lines in two P-level fields, whose reflectance differences were compared and the sensitive bands of P were discovered. Leaf Area Index (LAI) and yield under two P levels were quantitatively analyzed, and the responses of different varieties to P content in soil were observed. In addition, the correlations between 13 vegetation indexes and eight phenotypic parameters were compared under two P levels so as to find out the best vegetation index for maize characteristics estimation. A Back Propagation (BP) neural network was used to evaluate leaf area index and yield, and the corresponding prediction model was established. In order to classify different P levels of soil, the method of support vector machine (SVM) was applied. The results showed that the sensitive bands of P for maize canopy included 763 nm, 815 nm, and 900–1000 nm. P-stress had a significant effect on LAI and yield of most varieties, whose reduction rate reached 41% as a whole. In addition, it was found that the correlations between vegetation indexes and phenotypic parameters were weakened under low-P level. The regression coefficients of 0.75 and 0.5 for the prediction models of LAI and yield were found by combining the spectral data under two P levels. For the P-level identification in soil, the classification accuracy could reach above 86%. These abilities potentially allow for phenotypic parameters prediction of maize plants by spectral data and different phosphorus contents identification with unknown phosphorus fertilizer status.Publication Drying behavior and curcuminoids changes in turmeric slices during drying under simulated solar radiation as influenced by different transparent cover materials(2022) Komonsing, Nilobon; Reyer, Sebastian; Khuwijitjaru, Pramote; Mahayothee, Busarakorn; Müller, JoachimDried turmeric is used as a spice and traditional medicine. The common drying methods for turmeric (Curcuma longa L.) are sun drying and solar drying. In this study, turmeric slices with a thickness of 2 mm were dried at 40, 50, 60, and 70 °C in a laboratory hot-air dryer with a simulated solar radiation applied through transparent polycarbonate cover (UV impermeable) and PMMA cover (UV permeable). Air velocity and relative humidity of drying air were fixed at 1.0 M·s−1 and 25 g H2O kg−1 dry air, respectively. Light significantly increased the sample temperature under both covers. Page was the best model to predict the drying characteristics of turmeric slices. Drying rate correlated with the effective moisture diffusivity, which increased at higher temperature. The hue angle (h°) of turmeric was distinctly lower at 70 °C under both covers. The dried products were of intensive orange color. Curcumin, demethoxycurcumin, and total curcuminoids were affected by the cumulated thermal load (CTL). The lowest curcumin content was found at 40 °C under PMMA (highest CTL). The optimum drying condition was 70 °C under polycarbonate cover due to shorter drying time and better preservation of color and curcuminoids in the dried product.Publication Application of infrared imaging for early detection of downy mildew (Plasmopara viticola) in grapevine(2022) Zia-Khan, Shamaila; Kleb, Melissa; Merkt, Nikolaus; Schock, Steffen; Müller, JoachimLate detection of fungal infection is the main cause of inadequate disease control, affecting fruit quality and reducing yield of grapevine. Therefore, infrared imagery as a remote sensing technique was investigated in this study as a potential tool for early disease detection. Experiments were conducted under field conditions, and the effects of temporal and spatial variability in the leaf temperature of grapevine infected by Plasmopara viticola were studied. Evidence of the grapevine’s thermal response is a 3.2 °C increase in leaf temperature that occurred long before visible symptoms appeared. In our study, a correlation of R2 = 0.76 at high significance level (p ≤ 0.001) was found between disease severity and MTD. Since the pathogen attack alters plant metabolic activities and stomatal conductance, the sensitivity of leaf temperature to leaf transpiration is high and can be used to monitor irregularities in temperature at an early stage of pathogen development.Publication Evaluation of the effects of airflow distribution patterns on deposit coverage and spray penetration in multi-unit air-assisted sprayer(2022) Li, Tian; Qi, Peng; Wang, Zhichong; Xu, Shaoqing; Huang, Zhan; Han, Leng; He, XiongkuiEfficient utilization is a pre-requisite for pesticide reduction, and appropriate airflow distribution pattern plays a key role in enhancing the effectiveness of pesticide application by air-assisted orchard sprayers, yet the mechanism of this is unclear. In order to clarify the specific effects of airflow velocity and direction on spraying efficacy, a series of spray tests on pear and cherry and airflow distribution tests in open areas were conducted by a multi-unit air-assisted sprayer on ten different fan settings. Several deposit indicators were analyzed and contrasted with the air distribution. The results showed that an increase in airflow velocity inside the canopy improved the abaxial side deposit coverage of both pear (from 3.33% to 11.80% in the Top canopy and from 6.26% to 11.00% in the Upper canopy) and cherry leaves (from 3.61% to 10.87% in the Top canopy, from 1.36% to 9.04% in the Middle canopy, and from 3.40% to 9.04% in the Bottom canopy), but had no significant effect on the spray penetration. The correlation between deposit indicators and airflow velocities/directions was evaluated, and the results indicated that the enhanced airflow velocities, both in the forward and horizontal direction, improved the abaxial side deposit coverage (CAB) on the outside of pear canopy (p < 0.001), but for cherry, none of the airflow indicators had a significant impact on the CAB independently. On the other hand, the increased airflow direction angle in the cross-row plane for pear, as well as the increased airflow velocities in forward and vertical direction for cherry, both showed negative effects on the adaxial side deposit coverage (p < 0.01). The findings in this study might be helpful to improve the performance of pesticide application in orchards, especially for abaxial side deposition, and could provide a reference for the further investigations about the effect of airflow on spray canopy deposition.Publication Remote sensing of maize plant height at different growth stages using UAV-based digital surface models (DSM)(2022) Oehme, Leon Hinrich; Reineke, Alice-Jacqueline; Weiß, Thea Mi; Würschum, Tobias; He, Xiongkui; Müller, JoachimPlant height of maize is related to lodging resistance and yield and is highly heritable but also polygenic, and thus is an important trait in maize breeding. Various manual methods exist to determine the plant height of maize, yet they are labor-intensive and time consuming. Therefore, we established digital surface models (DSM) based on RGB-images captured by an unmanned aerial vehicle (UAV) at five different dates throughout the growth period to rapidly estimate plant height of 400 maize genotypes. The UAV-based estimation of plant height (PHUAV) was compared to the manual measurement from the ground to the highest leaf (PHL), to the tip of the manually straightened highest leaf (PHS) and, on the final date, to the top of the tassel (PHT). The best results were obtained for estimating both PHL (0.44 ≤ R2 ≤ 0.51) and PHS (0.50 ≤ R2 ≤ 0.61) from 39 to 68 days after sowing (DAS). After calibration the mean absolute percentage error (MAPE) between PHUAV and PHS was in a range from 12.07% to 19.62%. It is recommended to apply UAV-based maize height estimation from 0.2 m average plant height to maturity before the plants start to senesce and change the leaf color.Publication Development of multifunctional unmanned aerial vehicles versus ground seeding and outplanting: What is more effective for improving the growth and quality of rice culture?(2022) Qi, Peng; Wang, Zhichong; Wang, Changling; Xu, Lin; Jia, Xiaoming; Zhang, Yang; Wang, Shubo; Han, Leng; Li, Tian; Chen, Bo; Li, Chunyu; Mei, Changjun; Pan, Yayun; Zhang, Wei; Müller, Joachim; Liu, Yajia; He, XiongkuiThe agronomic processes are complex in rice production. The mechanization efficiency is low in seeding, fertilization, and pesticide application, which is labor-intensive and time-consuming. Currently, many kinds of research focus on the single operation of UAVs on rice, but there is a paucity of comprehensive applications for the whole process of seeding, fertilization, and pesticide application. Based on the previous research synthetically, a multifunctional unmanned aerial vehicle (mUAV) was designed for rice planting management based on the intelligent operation platform, which realized three functions of seeding, fertilizer spreading, and pesticide application on the same flight platform. Computational fluid dynamics (CFD) simulations were used for machine design. Field trials were used to measure operating parameters. Finally, a comparative experimental analysis of the whole process was conducted by comparing the cultivation patterns of mUAV seeding (T1) with mechanical rice direct seeder (T2), and mechanical rice transplanter (T3). The comprehensive benefit of different rice management processes was evaluated. The results showed that the downwash wind field of the mUAV fluctuated widely from 0 to 1.5 m, with the spreading height of 2.5 m, and the pesticide application height of 3 m, which meet the operational requirements. There was no significant difference in yield between T1, T2, and T3 test areas, while the differences in operational efficiency and input labor costs were large. In the sowing stage, T1 had obvious advantages since the working efficiency was 2.2 times higher than T2, and the labor cost was reduced by 68.5%. The advantages were more obvious compared to T3, the working efficiency was 4 times higher than in T3, and the labor cost was reduced by 82.5%. During the pesticide application, T1 still had an advantage, but it was not a significant increase in advantage relative to the seeding stage, in which operating efficiency increased by 1.3 times and labor costs were reduced by 25%. However, the fertilization of T1 was not advantageous due to load and other limitations. Compared to T2 and T3, operational efficiency was reduced by 80% and labor costs increased by 14.3%. It is hoped that this research will provide new equipment for rice cultivation patterns in different environments, while improving rice mechanization, reducing labor inputs, and lowering costs.Publication Processing miscanthus to high‐value chemicals: A techno‐economic analysis based on process simulation(2022) Götz, Markus; Rudi, Andreas; Heck, Raphael; Schultmann, Frank; Kruse, AndreaThermochemical biorefineries for the production of chemicals and materials can play an important role in the bioeconomy. However, their economic viability is often questioned under the premise of the economy of scale. This paper presents a regional, modular biorefinery concept for the production of the platform chemicals hydroxymethylfurfural (HMF), furfural and phenols from the lignocellulosic perennial miscanthus, which can be cultivated on marginal and degraded areas. The paper focuses on the question of the minimum selling price of HMF and the optimal plant size for this purpose, using the region of Baden‐Württemberg, Germany, as an example. Based on small pilot plant results, a scalable process simulation was created via AspenPlus. This allows different scenarios and process combinations of this multi‐output biorefinery concept to be compared with each other. Using this, a minimum sales price for the main product HMF is calculated using methods of dynamic investment cost calculation according to the net present value method. Based on this, the plant capacity was scaled. The scenarios and sensitivity analyses show that, with an accuracy of ±15%, regional biorefineries could already offer platform chemicals at prices of 2.21–2.90 EUR/kg HMF at the current stage of development. This corresponds to three to four times the price of today's comparative fossil base chemicals and is thus a competitive option from the authors’ point of view. The local biomass and the heat prices were identified as the main influencing factors. As a result, the selection of the location will have a decisive influence on the economic viability of such concepts in the case of further development and optimization of the process in first demonstration plants.Publication Continuous synthesis of 5‐hydroxymethylfurfural from biomass in on‐farm biorefinery(2022) Świątek, Katarzyna; Olszewski, Maciej P.; Kruse, Andrea5‐hydroxymethylfurfural (HMF) is the object of extensive research in recent times. The challenge in the industrial production of HMF is the choice of cheap, hexose feedstock. This study compares continuous HMF synthesis from hexoses—fructose and glucose, and biomass—Miscanthus × giganteus and chicory roots. The experiments were conducted in technical‐scale biorefinery (TRL 6/7). In the first stage, optimal conditions for the production of HMF from hexoses were selected using sulfuric acid as a catalyst in an aqueous medium. The following conditions were chosen for fructose: temperature of 200°C, the reaction time of 18 min, and pH = 2, and for glucose: 210°C, 18 min, and pH = 3. Under these conditions, the HMF yield was 56.5 mol% (39.6 wt.%) from fructose and 18.1 mol% (12.6 wt.%) from glucose. From the biomass, the HMF yields were 36.7 and 16.2 wt.% for miscanthus and chicory roots, respectively. Some results from the conversion of biomass solutions are unexpected and show a need for further investigations. This work has demonstrated the capacity to produce HMF from biomass as part of an environmentally friendly process in a biorefinery. Further research in this field and process optimization will be a step forward in the sustainable production of bioplastics.Publication Position accuracy assessment of a uav-mounted sequoia+ multispectral camera using a robotic total station(2022) Paraforos, Dimitrios S.; Sharipov, Galibjon M.; Heiß, Andreas; Griepentrog, Hans W.Remote sensing data in agriculture that are originating from unmanned aerial vehicles (UAV)-mounted multispectral cameras offer substantial information in assessing crop status, as well as in developing prescription maps for site-specific variable rate applications. The position accuracy of the multispectral imagery plays an important role in the quality of the final prescription maps and how well the latter correspond to the specific spatial characteristics. Although software products and developed algorithms are important in offering position corrections, they are time- and cost-intensive. The paper presents a methodology to assess the accuracy of the imagery obtained by using a mounted target prism on the UAV, which is tracked by a ground-based total station. A Parrot Sequoia+ multispectral camera was used that is widely utilized in agriculture-related remote sensing applications. Two sets of experiments were performed following routes that go along the north–south and east–west axes, while the cross-track error was calculated for all three planes, but also three-dimensional (3D) space. From the results, it was indicated that the camera’s D-GNSS receiver can offer imagery with a 3D position accuracy of up to 3.79 m, while the accuracy in the horizontal plane is higher compared to the vertical ones.Publication Challenges of green production of 2,5‐furandicarboxylic acid from bio‐derived 5‐hydroxymethylfurfural: Overcoming deactivation by concomitant amino acids(2022) Neukum, Dominik; Baumgarten, Lorena; Wüst, Dominik; Sarma, Bidyut Bikash; Saraçi, Erisa; Kruse, Andrea; Grunwaldt, Jan‐DierkThe oxidation of 5‐hydroxymethylfurfural (HMF) to 2,5‐furandicarboxylic acid (FDCA) is highly attractive as FDCA is considered as substitute for the petrochemically derived terephthalic acid. There are only few reports on the direct use of unrefined HMF solutions from biomass resources and the influence of remaining constituents on the catalytic processes. In this work, the oxidation of HMF in a solution as obtained from hydrolysis and dehydration of saccharides in chicory roots was investigated without intermediate purification steps. The amount of base added to the solution was critical to increase the FDCA yield. Catalyst deactivation occurred and was attributed to poisoning by amino acids from the bio‐source. A strong influence of amino acids on the catalytic activity was found for all supported Au, Pt, Pd, and Ru catalysts. A supported AuPd(2 : 1)/C alloy catalyst exhibited both superior catalytic activity and higher stability against deactivation by the critical amino acids.Publication Marketing strategies for cultured meat: A review(2022) Siddiqui, Shahida Anusha; Khan, Sipper; Murid, Misbah; Asif, Zarnab; Oboturova, Natalya Pavlovna; Nagdalian, Andrey Ashotovich; Blinov, Andrey Vladimirovich; Ibrahim, Salam A.; Jafari, Seid MahdiEnvironmentally intense and negative consequences relateing to conventional meat production systems have induced some actors to suggest alternative meat sources. Diseases carried by animals, human perception of cruelty to animals, and public health concerns about cardiovascular diseases have provided the basis for the development of cultured meat. The current market is influenced by many factors, including regulators, affordability, religion, and media perception. The existing cultured meat market is also regulated by legislatures, affordability, consumer religion, and the media. Consumer perception is distributed across various aspects, including ethical priorities, nutritional profile of the meat consumed, age-based acceptance, gender differentiation, political orientation, land-based attitude, education status, socioeconomic factors, and familiarity factor with the existing product in the market. Inhibiting barriers reported among consumers—including low naturalness, safety, nutritional concerns, trust, neophobia, economic, and ethical approaches—should be employed as marketing tactics directly to address their respective concerns. Tissue culture, starter cells, printing, and 3D printing are some of the methods currently being used for the production of cultured meat. Similarly, many hybrid technologies are also being used to produce meat-like products to increase consumer familiarity along and market presence. Existing research frameworks have improved the previous mindset of consumers with media coverage, educational frameworks, and the textural attributes of cultured meat. Additional benefits of CUME may include being environmentally friendly with less production of greenhouse gases. However, consumer trust, affordability, improving nutritional status, and widescale adoption are just a few of the parameters that need to be addressed to enhance consumer acceptability of these products. The aim of this article was to analyze the current state of cultured meat and the marketing content challenges and strategies used to advance public acceptance of cultured meat.Publication Biochemical methane potential of a biorefinery’s process-wastewater and its components at different concentrations and temperatures(2022) Khan, Muhammad Tahir; Huelsemann, Benedikt; Krümpel, Johannes; Wüst, Dominik; Oechsner, Hans; Lemmer, AndreasA sustainable circular bioeconomy requires the side streams and byproducts of biorefineries to be assimilated into bioprocesses to produce value-added products. The present study endeavored to utilize such a byproduct generated during the synthesis of 5-hydroxymethylfurfural as a potential feedstock for biogas production. For this purpose, biochemical methane potential tests for the full process-wastewater, its components (5-hydroxymethylfurfural, furfural, levulinic acid, and glycolic acid), together with furfural’s metabolites (furfuryl alcohol and furoic acid), and phenols (syringaldehyde, vanillin, and phenol), were conducted at mesophilic and thermophilic temperatures to assess their biodegradability and gas production kinetics. 0.1, 0.2, 0.3, and 0.4 g COD of the test components were added separately into assays containing 35 mL of inoculum. At their lowest concentrations, the test components, other than the process-wastewater, exhibited a stimulatory effect on methane production at 37 °C, whereas their increased concentrations returned a lower mean specific methane yield at either temperature. For similar component loads, the mesophilic assays outperformed the thermophilic assays for the mean measured specific methane yields. Components that impaired the anaerobic process with their elevated concentrations were phenol, vanillin, and 5-hydroxymethylfurfural. Poor degradation of the process-wastewater was deduced to be linked to the considerable share of 5-hydroxymethylfurfural in the process-wastewater governing its overall characteristics. With excessive recalcitrant components, it is recommended to use such waste streams and byproducts as a substrate for biogas plants operating at moderate temperatures, but at low rates.Publication Cultural, social and psychological factors of the conservative consumer towards legal cannabis use: A review since 2013(2022) Siddiqui, Shahida Anusha; Singh, Prachi; Khan, Sipper; Fernando, Ito; Baklanov, Igor Spartakovich; Ambartsumov, Tigran Garrievich; Ibrahim, Salam A.Cannabis consumption has become the center of much debate globally. The positive public perception of the medicinal benefits of cannabis and the rise of recreational usage of cannabis necessitate dramatic changes in cannabis reform policy. As a consequence, there is an increase in cannabis legalization around the globe, although it is still facing many rejections. It is crucial to understand the factors affecting public acceptance of cannabis use to support the contextualization and success of cannabis legalization. This review aims to address consumer cultural, social and psychological factors regarding the legal use of cannabis. Based on this review, cultures influence the endorsement or rejection of cannabis use depending on political views, religious sentiments and affiliated subcultures (adult, youth and adolescent subcultures). Regarding the social factors, socioeconomic status, measured by income, education level and occupation, is a key determinant of cannabis use. The beliefs opposing cannabis legalization are due to the negative stigma surrounding cannabis use. Nevertheless, growing awareness about the pharmaceutical and therapeutic effects of cannabis has led to an increase in positive attitudes towards cannabis legalization. Thus, dissemination of cannabis use benefits reaffirmed by scientific evidence could be a strategic way to alleviate the public’s negative feedback on cannabis legalization.Publication Occurrence of mycotoxins in pulses(2022) Acuña‐Gutiérrez, Catalina; Jiménez, Víctor M.; Müller, JoachimPulses, dry grains of the Fabaceae family used for food and feed, are particularly important agricultural products with increasing commercial and nutritional relevance. Similar to other plant commodities, pulses can be affected by fungi in the field and during postharvest. Some of these fungi produce mycotoxins, which can seriously threaten human and animal health by causing acute poisoning and chronic effects. In this review, information referring to the analysis and occurrence of these compounds in pulses is summarized. An overview of the aims pursued, and of the methodologies employed for mycotoxin analysis in the different reports is presented, followed by a comprehensive review of relevant articles on mycotoxins in pulses, categorized according to the geographical region, among other considerations. Moreover, special attention was given to the effect of climatic conditions on microorganism infestation and mycotoxin accumulation. Furthermore, the limited literature available was considered to look for possible correlations between the degree of fungal infection and the mycotoxin incidence in pulses. In addition, the potential effect of certain phenolic compounds on reducing fungi infestation and mycotoxin accumulation was reviewed with examples on beans. Emphasis was also given to a specific group of mycotoxins, the phomopsins, that mainly impact lupin. Finally, the negative consequences of mycotoxin accumulation on the physiology and development of contaminated seeds and seedlings are presented, focusing on the few reports available on pulses. Given the agricultural and nutritional potential that pulses offer for human well-being, their promotion should be accompanied by attention to food safety issues, and mycotoxins might be among the most serious threats.