Institut für Agrartechnik
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/19
Browse
Browsing Institut für Agrartechnik by Sustainable Development Goals "7"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Publication Combined butyric acid and methane production from grass silage in a novel green biorefinery concept(2022) Steinbrenner, Jörg; Müller, Joachim; Oechsner, HansIn a Green Biorefinery, grass silage can be a source for lactic acid, proteins, amino acids and fibres. Processing residues can be used for anaerobic digestion and methane production. But by changing the ensiling conditions, butyric acid fermentation can be achieved. That makes grass silage also a potential substrate for a combined butyric acid and methane production. The objective of this study was to determine the potential of butyric acid production at different ensiling conditions applied to grass and measuring the methane yield potential of solid residues after a separation step. The highest butyric acid concentration in the produced press juice was 20.1 ± 4.5 g kg⁻¹ and was achieved by carbonated lime addition and a reduced dry matter content after 90 days at mesophilic storage conditions. This resulted in a theoretical butyric acid yield of 332 kg ha⁻¹ a⁻¹. For the fibrous leftover press cake, a theoretical methane production potential of 2778 m3CH4 ha⁻¹ a⁻¹ was reached. The results show that theoretically a combined production of butyric acid and methane can be realised in a Green Biorefinery concept.Publication Computational sizing of solar powered peanut oil extraction in Senegal using a synthetic load profile(2024) Bonzi, Joévin Wiomou; Romuli, Sebastian; Diouf, Djicknoum; Piriou, Bruno; Meissner, Klaus; Müller, JoachimThis paper presents an approach for sizing a hybrid photovoltaic system for a small-scale peanut oil processing company (Yaye Aissatou, Passy) in rural Senegal using a synthetic load profile. In this study, a predictive model of the electrical load of a service-based plant oil processing company was developed through a diagnosis, to evaluate the extraction process. The mass and energy balance were measured, and the process was implemented into MATLAB Simulink. The simulated load profile was implemented in HOMER Pro and the characteristics of the most profitable hybrid systems were identified. The results showed that the lowest net present cost over 25 years was found with a PV/battery/grid-system with 18.6 kWp solar panels, 16 kWh of storage, and an initial investment of 20,019 €. Compared to a grid-only scenario, this solution reduces the net present cost from an initial 72,163 € to 31,603 €, the operating cost from 3675 € per year to 590 € per year, and the cost of energy from 0.29 to 0.13 €/kWh. The renewable fraction of the proposed system is 90.0 % while the expected payback period is 6.2 years. The study demonstrates the economic feasibility of using solar energy for plant oil processing.Publication Effects of harvest date and ensiling additives on the optimized ensiling of Silphium perfoliatum to prevent faulty fermentation(2024) Baumgart, Marian; Hülsemann, Benedikt; Sailer, Gregor; Oechsner, Hans; Müller, Joachim; Hu, Wei; Zhou, Zhiguo; Zhao, WenqingSilphium perfoliatum , an energy crop with a high fiber content but low concentrations of fermentable carbohydrates, presents challenges for complete fermentation in biogas production. To overcome this, a bioeconomic approach proposes the use of the fibers for paper and board production, which requires high-quality silage with minimal butyric acid, which affects the marketability of the fibers. This study aims to optimize the silaging process of Silphium perfoliatum by investigating the effects of harvest date, bacterial cultures and additives on fermentation results. Laboratory experiments were conducted to evaluate the effect of three harvest dates on fermentation acid composition, with a focus on increasing lactic acid production to inhibit butyric acid formation. Results indicate that an early harvest date (early September) is critical for achieving stable fermentation and minimizing ensiling losses. The addition of sugar-rich additives, such as syrup, was found to be essential, especially for later harvest dates. Despite these interventions, a late harvest (early November) consistently resulted in suboptimal fermentation. The results suggest that optimizing harvest timing and incorporating appropriate additives are key strategies for producing high quality silage and ensuring the suitability of Silphium perfoliatum fibers for industrial applications.Publication Effects of pretreatment with a ball mill on methane yield of horse manure(2023) Heller, René; Roth, Peter; Hülsemann, Benedikt; Böttinger, Stefan; Lemmer, Andreas; Oechsner, HansLignocellulosic biomass is an abundant organic material, which can be utilised in biogas plants for sustainable production of biogas. Since these substrates usually have high lignin contents and consist of rather elongated particles, a special pretreatment is required for an economical and process-stable utilisation in the biogas plant. The mechanical pretreatment of horse manure was carried out with the prototype of a ball mill at different speeds. The aim of ball milling is to comminute the substrate and disintegrate the lignocellulosic bond. Mechanical pretreatment in the ball mill resulted in a significant increase in specific methane yield of more than 37% in anaerobic batch digestion (up to 243 LCH4 kgVS−1) of horse manure. The kinetics of the methane gas formation process was analysed by a modified Gompertz model fitting and showed a higher methane production potential and maximum daily methane production rate as well as a lower duration of the lag phase after pretreatment at 6 rpm. This was further confirmed by sieve analyses, which showed a significant reduction of particle size compared to the untreated variant. Thus, the use of the ball mill increases the specific methane yield and improves the fermentation of lignocellulosic substrates such as horse manure.Publication How fluid pseudoplasticity and elasticity affect propeller flows in biogas fermenters(2024) Kolano, Markus; Ohnmacht, Benjamin; Lemmer, Andreas; Kraume, MatthiasMixing in biogas fermenters is complex due to the non‐Newtonian rheology of biogenic substrates, which exhibit both pseudoplasticity and elasticity. It is yet unclear how these non‐Newtonian properties affect propeller flows and the mixing behavior in fermenters. Therefore, propeller flows in Newtonian as well as shear‐thinning inelastic and elastic fluids are compared numerically and validated against particle image velocity (PIV) data. Elastic normal stresses lead to an increase of pumping rates in the laminar regime and a suppression of the formation of a propeller jet in the transitional regime. Thus, flow rates are severely overestimated by the inelastic, shear‐thinning model in this regime. The results indicate that elasticity is critical for an accurate modeling of flows of biogenic substrates.Publication Risk analysis of the biogas project(2023) Nurgaliev, Timur; Koshelev, Valery; Müller, JoachimThe dynamic model of the biogas project was created with changing parameter values over time and compared to the static model of the same project based on constant values of the same parameters. For the dynamic model, the same methods were used to evaluate the biogas project as for the static model to calculate substrate mix volumes, costs, farm production volumes, number of biogas plant equipment, driers, and other numerical characteristics of the farm. Project risks were evaluated by the sensitivity analysis and Monte Carlo simulation. The study was conducted for four scenarios regarding the substrate mix structure and the possibility of selling electricity on the market. In the scenarios, the scale of the project was determined by the size and structure of agricultural and biogas production. The results have shown that when only wastes are used as substrates, net present values (NPVs) of the project are equal to 29.45 and 56.50 M RUB in dependence on the possibility to sell electricity on the market. At the same time, when the substrate mix is diversified, the project NPVs are equal to 89.17 and 186.68 M RUB depending on the ability to sell all the produced electricity to the common power grid. The results of the sensitivity analysis defined that the values of elasticity coefficients are less than 3.14%. Results of the Monte Carlo simulation have shown a probability distribution of positive NPVs for each scenario. This study was conducted to make recommendations for business and municipalities.Publication Technical evaluation of a solar-biomass flatbed dryer for maize cobs drying in Rwanda(2023) Ntwali, Janvier; Romuli, Sebastian; Bonzi, Joévin Wiomou; Müller, JoachimThe persistent problem of postharvest losses in the maize value chain poses an arduous challenge for smallholder farmers in Rwanda, ultimately reducing their market bargaining power. As a consequence, there is an exacerbated disparity in revenues that makes farmers, predominantly female farmers, more vulnerable. The existing drying facilities are based on ambient air drying with a long drying time and the alternative mechanical dryers use mostly fossil fuels which is not a sustainable solution. A solar-biomass hybrid flatbed dryer for maize cobs drying was designed and constructed in the high-altitude volcanic zone of Rwanda. The objective was to provide farmers with an affordable and sustainable drying system with a high drying rate compared to the existing method. In this study, we present the results of the technical evaluation of the dryer to rate its capacity to dry maize cobs to the recommended moisture content. Energy balance was assessed by temperature sensors, airflow distribution was measured with a vane anemometer and the solar radiation from weather station were compared to the solar system data recorded through a datalogging charge controller. Maize was dried in three batches and the moisture content was measure with oven method. Results showed a uniform distribution of airflow on the dryer perforated flow. The burner consumed on average 6 kg of empty cobs per hour and the burner efficiency was 59.4 %. The solar system provided a maximum daily yield of 2.6 kWh, and the battery was able to maintain the system during days of low solar energy availability. Maize cobs were dried from an average moisture content of 23.0 % to 13.7 % in an average period of 90.6 hours. This drying time was significantly lower compared to the already existing system which uses more than 6 weeks. The results prove that the solar-Biomass hybrid flatbed dryer was appropriate for drying maize cobs to the recommended moisture content and thus reduce the risk of postharvest losses in maize value chain in Rwanda. The dryer might be further improved by combining the burner with a solar heating system to further reduce the biomass mass consumption.Publication Use of real-time load profile measurement to optimize photovoltaicsystems dimensioning in shea butter production(2024) Bonzi, Joévin Wiomou; Nounagnon, Bignon Stephanie; Romuli, Sebastian; Soro, Yrébégnan Moussa; Müller, JoachimProductive use of renewable energy, particularly solar power, is essential for sustainable energy provision, especially in resource-constrained regions like sub-Saharan Africa. Accurate data on energy consumption patterns is crucial for properly sizing photovoltaic systems. However, conventional sizing methods, particularly for commercial and industrial needs often overestimate requirements, leading to economically onerous systems. Intuitive methods rely on simplified computations based on worstcase scenarios, such as lowest monthly average irradiation and daily load demand. They fail to consider solar irradiation fluctuations. Numerical methods, involve simulations at regular intervals. However, their practical application relies on interviews or electrical bills, which lacks accuracy in evaluating dynamic electrical consumption. This study tackles this challenge by developing a remote measurement system to monitor power consumption in a shea butter production facility (SOTOKACC, Toussiana, Burkina Faso). Shea, a popular product in the cosmetic, pharmaceutic, and food industries globally, originates solely from sub-Saharan Africa, where it sustains livelihoods for over 16 million rural women. While traditional methods still dominate shea butter production, initiatives aimed at adopting mechanical presses for extraction are on the rise. The system developed comprises two Arduino devices: a weather station and a power sensor. The weather station, powered by solar energy, recorded solar irradiation, ambient temperature and relative humidity. The power sensor, equipped with current clamp and voltage sensors, monitors various electrical parameters across three phases. The data were transmitted to an online platform via a Wi-Fi network. Over a two-month period, constant measurements were conducted to delineate the facility’s load profile. Sizing was performed using the HOMER Pro software to determine the characteristics of the most cost-effective photovoltaic system for the facility. A comparison was made between the conventional sizing procedure based on monthly electrical consumption and that based on remote measurements. Results indicate that load profile evaluation yields more cost-effective solutions with reduced storage requirements compared to traditional methods. This research highlights the potential of affordable measurement tools in developing sustainable energy solutions for small and medium-sized enterprises (SMEs).
