Institut für Lebensmittelwissenschaft und Biotechnologie
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/6
Browse
Browsing Institut für Lebensmittelwissenschaft und Biotechnologie by Sustainable Development Goals "2"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Consumption of yeast-fermented wheat and rye breads increases colitis and mortality in a mouse model of colitis(2022) Zimmermann, Julia; De Fazio, Luigia; Kaden-Volynets, Valentina; Hitzmann, Bernd; Bischoff, Stephan C.; Zimmermann, Julia; Department of Nutritional Medicine/Prevention, University of Hohenheim, Stuttgart, Germany; De Fazio, Luigia; Department of Medical and Surgical Science (DIMEC), University of Bologna, Bologna, Italy; Kaden-Volynets, Valentina; Department of Nutritional Medicine/Prevention, University of Hohenheim, Stuttgart, Germany; Hitzmann, Bernd; Department of Process Analytics and Cereal Science, University of Hohenheim, Stuttgart, Germany; Bischoff, Stephan C.; Department of Nutritional Medicine/Prevention, University of Hohenheim, Stuttgart, GermanyBackground: Cereals are known to trigger for wheat allergy, celiac disease and non-celiac wheat sensitivity (NCWS). Inflammatory processes and intestinal barrier impairment are suspected to be involved in NCWS, although the molecular triggers are unclear. Aims: We were interested if different bread types influence inflammatory processes and intestinal barrier function in a mouse model of inflammatory bowel disease. Methods: Epithelial caspase-8 gene knockout (Casp8 ΔIEC ) and control (Casp8 fl ) mice were randomized to eight groups, respectively. The groups received different diets for 28 days (gluten-free diet, gluten-rich diet 5 g%, or different types of bread at 50 g%). Breads varied regarding grain, milling and fermentation. All diets were isocaloric. Results: Regardless of the diet, Casp8 ΔIEC mice showed pronounced inflammation in colon compared to ileum, whereas Casp8 fl mice were hardly inflamed. Casp8 fl mice could tolerate all bread types. Especially yeast fermented rye and wheat bread from superfine flour but not pure gluten challenge increased colitis and mortality in Casp8 ΔIEC mice. Hepatic expression of lipopolysaccharide-binding protein and colonic expression of tumor necrosis factor-α genes were inversely related to survival. The bread diets, but not the gluten-rich diet, also decreased colonic tight junction expression to variable degrees, without clear association to survival and inflammation. Conclusions: Bread components, especially those from yeast-fermented breads from wheat and rye, increase colitis and mortality in Casp8 ΔIEC mice highly susceptible to intestinal inflammation, whereas control mice can tolerate all types of bread without inflammation. Yet unidentified bread components other than gluten seem to play the major role.Publication Food informatics - Review of the current state-of-the-art, revised definition, and classification into the research landscape(2021) Krupitzer, Christian; Stein, AnthonyBackground: The increasing population of humans, changing food consumption behavior, as well as the recent developments in the awareness for food sustainability, lead to new challenges for the production of food. Advances in the Internet of Things (IoT) and Artificial Intelligence (AI) technology, including Machine Learning and data analytics, might help to account for these challenges. Scope and Approach: Several research perspectives, among them Precision Agriculture, Industrial IoT, Internet of Food, or Smart Health, already provide new opportunities through digitalization. In this paper, we review the current state-of-the-art of the mentioned concepts. An additional concept is Food Informatics, which so far is mostly recognized as a mainly data-driven approach to support the production of food. In this review paper, we propose and discuss a new perspective for the concept of Food Informatics as a supportive discipline that subsumes the incorporation of information technology, mainly IoT and AI, in order to support the variety of aspects tangent to the food production process and delineate it from other, existing research streams in the domain. Key Findings and Conclusions: Many different concepts related to the digitalization in food science overlap. Further, Food Informatics is vaguely defined. In this paper, we provide a clear definition of Food Informatics and delineate it from related concepts. We corroborate our new perspective on Food Informatics by presenting several case studies about how it can support the food production as well as the intermediate steps until its consumption, and further describe its integration with related concepts.Publication Recombinant production of bovine αS1-casein in genome-reduced Bacillus subtilis strain IIG-Bs-20-5-1(2025) Biermann, Lennart; Tadele, Lea Rahel; Benatto Perino, Elvio Henrique; Nicholson, Reed; Lilge, Lars; Hausmann, Rudolf; Biermann, Lennart; Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.); Tadele, Lea Rahel; Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.); Benatto Perino, Elvio Henrique; Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.); Nicholson, Reed; Motif FoodWorks, Inc., 27 Drydock Ave, Boston, MA 02210, USA;; Lilge, Lars; Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.); Hausmann, Rudolf; Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.); Fouillaud, MireilleBackground: Cow’s milk represents an important protein source. Here, especially casein proteins are important components, which might be a promising source of alternative protein production by microbial expression systems. Nevertheless, caseins are difficult-to-produce proteins, making heterologous production challenging. However, the potential of genome-reduced Bacillus subtilis was applied for the recombinant production of bovine αS1-casein protein. Methods: A plasmid-based gene expression system was established in B. subtilis allowing the production of his-tagged codon-optimized bovine αS1-casein. Upscaling in a fed-batch bioreactor system for high cell-density fermentation processes allowed for efficient recombinant αS1-casein production. After increasing the molecular abundance of the recombinant αS1-casein protein using immobilized metal affinity chromatography, zeta potential and particle size distribution were determined in comparison to native bovine αS1-casein. Results: Non-sporulating B. subtilis strain BMV9 and genome-reduced B. subtilis strain IIG-Bs-20-5-1 were applied for recombinant αS1-casein production. Casein was detectable only in the insoluble protein fraction of the genome-reduced B. subtilis strain. Subsequent high cell-density fed-batch bioreactor cultivations using strain IIG-Bs-20-5-1 resulted in a volumetric casein titer of 56.9 mg/L and a yield of 1.6 mgcasein/gCDW after reducing the B. subtilis protein content. Comparative analyses of zeta potential and particle size between pre-cleaned recombinant and native αS1-casein showed pH-mediated differences in aggregation behavior. Conclusions: The study demonstrates the potential of B. subtilis for the recombinant production of bovine αS1-casein and underlines the potential of genome reduction for the bioproduction of difficult-to-produce proteins.