Institut für Lebensmittelwissenschaft und Biotechnologie
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/6
Browse
Recent Submissions
Publication Optimization of no-wait flowshop scheduling problem in bakery production with modified PSO, NEH and SA(2021) Babor, Majharulislam; Senge, Julia; Rosell, Cristina M.; Rodrigo, Dolores; Hitzmann, BerndIn bakery production, to perform a processing task there might be multiple alternative machines that have the same functionalities. Finding an efficient production schedule is challenging due to the significant nondeterministic polynomial time (NP)-hardness of the problem when the number of products, processing tasks, and alternative machines are higher. In addition, many tasks are performed manually as small and medium-size bakeries are not fully automated. Therefore, along with machines, the integration of employees in production planning is essential. This paper presents a hybrid no-wait flowshop scheduling model (NWFSSM) comprising the constraints of common practice in bakeries. The schedule of an existing production line is simulated to examine the model and is optimized by performing particle swarm optimization (PSO), modified particle swarm optimization (MPSO), simulated annealing (SA), and Nawaz-Enscore-Ham (NEH) algorithms. The computational results reveal that the performance of PSO is significantly influenced by the weight distribution of exploration and exploitation in a run time. Due to the modification to the acceleration parameter, MPSO outperforms PSO, SA, and NEH in respect to effectively finding an optimized schedule. The best solution to the real case problem obtained by MPSO shows a reduction of the total idle time (TIDT) of the machines by 12% and makespan by 30%. The result of the optimized schedule indicates that for small- and medium-sized bakery industries, the application of the hybrid NWFSSM along with nature-inspired optimization algorithms can be a powerful tool to make the production system efficient.Publication Influence of muscle type and microstructure on iridescence in cooked, cured pork meat products(2021) Ruedt, Chiara; Gibis, Monika; Weiss, JochenMicrostructural factors associated with surface iridescence in cooked, cured pork products were investigated. Meat iridescence is a commonly observed physical phenomenon in raw meat and meat products that consist of intact mus- cle tissue. Since the purchase decision of consumers is mainly driven by the first impression of meat color and appearance, products showing colorful iri- descence may be rejected. Four different muscles (RF: M. rectus femoris, BF: M. biceps femoris, ST: M. semitendinosus, and LD: M. longissimus thoracis et lum- borum) were brine-injected, cooked, sliced, and iridescence was evaluated by digital image analysis and sensory analysis. Sarcomere lengths, fiber diameters, and surface microstructure were analyzed in iridescent and noniridescent sec- tions. Highest iridescence extent by image analysis was found in LD (37.3 ± 16.4%), and highest overall iridescence score (extent and intensity, 6.11 ± 1.78) was observed in BF. Sarcomere lengths did not differ significantly between iridescent (1.05 ± 0.09 µm LD) and noniridescent areas (1.08 ± 0.94 µm LD) within mus- cles (p > 0.05). Iridescent sections showed smooth and ordered surface structures with cross-sectioned myofibers, whereas in noniridescent sections, surfaces were more unstructured and myofibers obliquely cut. The results of the study indicate that the sarcomere length and fiber diameters may thus be only of minor impor- tance for the explanation of meat iridescence in cooked meat products and are rather related to multiple scattering and absorption effects on smaller structural entities such as the myofilament lattice or larger entities such as fiber bundles. Practical application: Iridescence can be a problem for the meat industry due to consumers concerns about green-iridescent colors in meat. The underlying mechanisms and structures have not yet been fully clarified, and thus no prac- tical solutions to eliminate iridescence have been found so far. This research presents new insights into the structural attributes that are interrelated with meat iridescence and shows that iridescence is rather influenced by cutting angle of muscle fibers and surface homogeneity than by muscle fiber diameters or sar- comere lengths. This should be considered by the industry when seeking for ways to reduce the potential problem of iridescencePublication Generic chemometric models for metabolite concentration prediction based on Raman spectra(2022) Yousefi-Darani, Abdolrahim; Paquet-Durand, Olivier; von Wrochem, Almut; Classen, Jens; Tränkle, Jens; Mertens, Mario; Snelders, Jeroen; Chotteau, Veronique; Mäkinen, Meeri; Handl, Alina; Kadisch, Marvin; Lang, Dietmar; Dumas, Patrick; Hitzmann, BerndChemometric models for on-line process monitoring have become well established in pharmaceutical bioprocesses. The main drawback is the required calibration effort and the inflexibility regarding system or process changes. So, a recalibration is necessary whenever the process or the setup changes even slightly. With a large and diverse Raman dataset, however, it was possible to generate generic partial least squares regression models to reliably predict the concentrations of important metabolic compounds, such as glucose-, lactate-, and glutamine-indifferent CHO cell cultivations. The data for calibration were collected from various cell cultures from different sites in different companies using different Raman spectrophotometers. In testing, the developed “generic” models were capable of predicting the concentrations of said compounds from a dilution series in FMX-8 mod medium, as well as from an independent CHO cell culture. These spectra were taken with a completely different setup and with different Raman spectrometers, demonstrating the model flexibility. The prediction errors for the tests were mostly in an acceptable range (<10% relative error). This demonstrates that, under the right circumstances and by choosing the calibration data carefully, it is possible to create generic and reliable chemometric models that are transferrable from one process to another without recalibration.Publication Application of two-dimensional fluorescence spectroscopy for the on-line monitoring of teff-based substrate fermentation inoculated with certain probiotic bacteria(2022) Alemneh, Sendeku Takele; Emire, Shimelis Admassu; Jekle, Mario; Paquet-Durand, Olivier; von Wrochem, Almut; Hitzmann, BerndThere is increasing demand for cereal-based probiotic fermented beverages as an alternative to dairy-based products due to their limitations. However, analyzing and monitoring the fermentation process is usually time consuming, costly, and labor intensive. This research therefore aims to apply two-dimensional (2D)-fluorescence spectroscopy coupled with partial least-squares regression (PLSR) and artificial neural networks (ANN) for the on-line quantitative analysis of cell growth and concentrations of lactic acid and glucose during the fermentation of a teff-based substrate. This substrate was inoculated with mixed strains of Lactiplantibacillus plantarum A6 (LPA6) and Lacticaseibacillus rhamnosus GG (LCGG). The fermentation was performed under two different conditions: condition 1 (7 g/100 mL substrate inoculated with 6 log cfu/mL) and condition 2 (4 g/100 mL substrate inoculated with 6 log cfu/mL). For the prediction of LPA6 and LCGG cell growth, the relative root mean square error of prediction (pRMSEP) was measured between 2.5 and 4.5%. The highest pRMSEP (4.5%) was observed for the prediction of LPA6 cell growth under condition 2 using ANN, but the lowest pRMSEP (2.5%) was observed for the prediction of LCGG cell growth under condition 1 with ANN. A slightly more accurate prediction was found with ANN under condition 1. However, under condition 2, a superior prediction was observed with PLSR as compared to ANN. Moreover, for the prediction of lactic acid concentration, the observed values of pRMSEP were 7.6 and 7.7% using PLSR and ANN, respectively. The highest error rates of 13 and 14% were observed for the prediction of glucose concentration using PLSR and ANN, respectively. Most of the predicted values had a coefficient of determination (R2) of more than 0.85. In conclusion, a 2D-fluorescence spectroscopy combined with PLSR and ANN can be used to accurately monitor LPA6 and LCGG cell counts and lactic acid concentration in the fermentation process of a teff-based substrate. The prediction of glucose concentration, however, showed a rather high error rate.Publication Surfactin shows relatively low antimicrobial activity against Bacillus subtilis and other bacterial model organisms in the absence of synergistic metabolites(2022) Lilge, Lars; Ersig, Nadine; Hubel, Philipp; Aschern, Moritz; Pillai, Evelina; Klausmann, Peter; Pfannstiel, Jens; Henkel, Marius; Morabbi Heravi, Kambiz; Hausmann, RudolfSurfactin is described as a powerful biosurfactant and is natively produced by Bacillus subtilis in notable quantities. Among other industrially relevant characteristics, antimicrobial properties have been attributed to surfactin-producing Bacillus isolates. To investigate this property, stress approaches were carried out with biotechnologically established strains of Corynebacterium glutamicum, Bacillus subtilis, Escherichia coli and Pseudomonas putida with the highest possible amounts of surfactin. Contrary to the popular opinion, the highest growth-reducing effects were detectable in B. subtilis and E. coli after surfactin treatment of 100 g/L with 35 and 33%, respectively, while P. putida showed no growth-specific response. In contrast, other antimicrobial biosurfactants, like rhamnolipids and sophorolipids, showed significantly stronger effects on bacterial growth. Since the addition of high amounts of surfactin in defined mineral salt medium reduced the cell growth of B. subtilis by about 40%, the initial stress response at the protein level was analyzed by mass spectrometry, showing induction of stress proteins under control of alternative sigma factors σB and σW as well as the activation of LiaRS two-component system. Overall, although surfactin is associated with antimicrobial properties, relatively low growth-reducing effects could be demonstrated after the surfactin addition, challenging the general claim of the antimicrobial properties of surfactin.Publication A robust fermentation process for natural chocolate-like flavor production with Mycetinis scorodonius(2022) Rigling, Marina; Heger, Fabienne; Graule, Maria; Liu, Zhibin; Zhang, Chen; Ni, Li; Zhang, YanyanSubmerged fermentation of green tea with the basidiomycete Mycetinis scorodonius resulted in a pleasant chocolate-like and malty aroma, which could be a promising chocolate flavor alternative to current synthetic aroma mixtures in demand of consumer preferences towards healthy natural and ‘clean label’ ingredients. To understand the sensorial molecular base on the chocolate-like aroma formation, key aroma compounds of the fermented green tea were elucidated using a direct immersion stir bar sorptive extraction combined with gas chromatography–mass spectrometry–olfactometry (DI-SBSE-GC-MS-O) followed by semi-quantification with internal standard. Fifteen key aroma compounds were determined, the most important of which were dihydroactinidiolide (odor activity value OAV 345), isovaleraldehyde (OAV 79), and coumarin (OAV 24), which were also confirmed by a recombination study. Furthermore, effects of the fermentation parameters (medium volume, light protection, agitation rate, pH, temperature, and aeration) on the aroma profile were investigated in a lab-scale bioreactor at batch fermentation. Variation of the fermentation parameters resulted in similar sensory perception of the broth, where up-scaling in volume evoked longer growth cycles and aeration significantly boosted the concentrations yet added a green note to the overall flavor impression. All findings prove the robustness of the established fermentation process with M. scorodonius for natural chocolate-like flavor production.Publication Orotic acid production by Yarrowia lipolytica under conditions of limited pyrimidine(2021) Swietalski, Paul; Hetzel, Frank; Klaiber, Iris; Pross, Eva; Seitl, Ines; Fischer, LutzOrotic acid (OA) is an intermediate of the pyrimidine biosynthesis with high industrial relevance due to its use as precursor for production of biochemical pyrimidines or its use as carrier molecule in drug formulations. It can be produced by fermentation of microorganisms with engineered pyrimidine metabolism. In this study, we surprisingly discovered the yeast Yarrowia lipolytica as a powerful producer of OA. The overproduction of OA in the Y. lipolytica strain PO1f was found to be caused by the deletion of the URA3 gene which prevents the irreversible decarboxylation of OA to uridine monophosphate. It was shown that the lack of orotidine‐5′‐phosphate decarboxylase was the reason for the accumulation of OA inside the cell since a rescue mutant of the URA3 deletion in Y. lipolytica PO1f completely prevented the OA secretion into the medium. In addition, pyrimidine limitation in the cell massively enhanced the OA accumulation followed by secretion due to intense overflow metabolism during bioreactor cultivations. Accordingly, supplementation of the medium with 200 mg/L uracil drastically decreased the OA overproduction by 91%. OA productivity was further enhanced in fed‐batch cultivation with glucose and ammonium sulfate feed to a maximal yield of 9.62 ± 0.21 g/L. Y. lipolytica is one of three OA overproducing yeasts described in the literature so far, and in this study, the highest productivity was shown. This work demonstrates the potential of Y. lipolytica as a possible production organism for OA and provides a basis for further metabolic pathway engineering to optimize OA productivity.Publication High molecular weight λ-carrageenan improves the color stability of phycocyanin by associative interactions(2022) Buecker, Stephan; Grossmann, Lutz; Loeffler, Myriam; Leeb, Elena; Weiss, JochenPhycocyanin is a protein-chromophore structure present in Arthrospira platensis commonly used as a blue-colorant in food. Color losses of phycocyanin can be reduced by electrostatic complexation with λ-carrageenan. The aim of this study was to investigate the effect of molecular weight (MW) of λ-carrageenan on the color stabilization of electrostatic complexes formed with phycocyanin and λ-carrageenan. Samples were heated to 70 or 90°C at pH 3.0 and stored at 25°C for 14 days. The MW of λ-carrageenan was reduced by ultrasound treatments for 15, 30, 60, and 90 min. Prolonged ultrasonication had a pronounced effect on the Mw, which decreased from 2,341 to 228 kDa (0–90 min). Complexes prepared with low MW λ-carrageenan showed greater color changes compared to complexes prepared with high MW λ-carrageenan. The MW had no visible effect on color stability on day 0, but green/yellow shifts were observed during storage and after heating to 70°C. Medium MW showed less color stabilization effects compared to low MW when heated to 70°C. Moreover, for solutions prepared with ultrasonicated λ-carrageenan, significant hue shifts toward green/yellow, and precipitation were observed after a heat treatment at 90°C. In addition, the sizes of the complexes were significantly reduced (646–102 nm) by using ultrasonicated λ-carrageenan, except for the lowest MW λ-carrageenan when heated to 90°C. Overall, these findings demonstrated that decreasing the MW of λC had adverse effects on the color stability of PC:λC complexes heated to 70 and 90°C.Publication Influence of processing steps on structural, functional, and quality properties of beef hamburgers(2022) Berger, Lisa M.; Witte, Franziska; Terjung, Nino; Weiss, Jochen; Gibis, MonikaIn hamburger manufacturing, meat is subjected to four main processing steps (pre-grinding, mixing, grinding, and forming), whereby muscle fibers are disintegrated. In this study, the influence of these process steps was characterized by structural (amount of non-intact cells (ANIC), CLS-Microscopy), functional (drip loss) and qualitative (soluble protein content, lactate dehydrogenase (LDH) activity, myoglobin content (Mb)) parameters of the meat. Therefore, meat samples were analyzed after each process step. Histological analyses revealed an increased ANIC with progressive processing. Thereby, the first and second grinding steps caused the strongest increases (factors 2.43 and 2.69). Comparable results were found in the relative LDH activity (factor 2.20 and 1.62) and the Mb concentration (factor 2.24 and 1.33) of the extracted meat solution. The findings suggest that the disintegration of the meat structure increases with progressive processing, causing more vulnerable structures which result in increased leakage of intramuscular substances. Further, the type of stress acting on the meat determines the extent of the changes. The presented findings enable manufacturers to precisely adjust their process towards more gentle production parameters and thus, to meet the legal regulations.Publication Consumption of antioxidant-rich “Cerrado” cashew pseudofruit affects hepatic gene expression in obese C57BL/6J high fat-fed mice(2022) Egea, Mariana Buranelo; Pierce, Gavin; Park, Si-Hong; Lee, Sang-In; Heger, Fabienne; Shay, NeilThe pseudofruit of A. othonianum Rizzini, “Cerrado” cashew pulp, has been described as rich in flavonoids, phenolic compounds, and vitamin C. The objective of this work was to evaluate the beneficial health effects seen with the addition of “Cerrado” cashew pulp (CP) to an obesogenic high fat diet provided to C57BL/6J male mice. In week 9, the HF-fed group had a significantly higher baseline glucose concentration than the LF- or HF+CP-fed groups. In RNAseq analysis, 4669 of 5520 genes were found to be differentially expressed. Among the genes most upregulated with the ingestion of the CP compared to HF were Ph1da1, SLc6a9, Clec4f, and Ica1 which are related to glucose homeostasis; Mt2 that may be involved steroid biosynthetic process; and Ciart which has a role in the regulation of circadian rhythm. Although “Cerrado” CP intake did not cause changes in the food intake or body weight of fed mice with HF diet, carbohydrate metabolism appeared to be improved based on the observed changes in gene expression.Publication A robust one-step recombineering system for enterohemorrhagic escherichia coli(2022) Peng, Lang; Dumevi, Rexford Mawunyo; Chitto, Marco; Haarmann, Nadja; Berger, Petya; Koudelka, Gerald; Schmidt, Herbert; Mellmann, Alexander; Dobrindt, Ulrich; Berger, MichaelEnterohemorrhagic Escherichia coli (EHEC) can cause severe diarrheic in humans. To improve therapy options, a better understanding of EHEC pathogenicity is essential. The genetic manipulation of EHEC with classical one-step methods, such as the transient overexpression of the phage lambda (λ) Red functions, is not very efficient. Here, we provide a robust and reliable method for increasing recombineering efficiency in EHEC based on the transient coexpression of recX together with gam, beta, and exo. We demonstrate that the genetic manipulation is 3–4 times more efficient in EHEC O157:H7 EDL933 Δstx1/2 with our method when compared to the overexpression of the λ Red functions alone. Both recombineering systems demonstrated similar efficiencies in Escherichia coli K-12 MG1655. Coexpression of recX did not enhance the Gam-mediated inhibition of sparfloxacin-mediated SOS response. Therefore, the additional inhibition of the RecFOR pathway rather than a stronger inhibition of the RecBCD pathway of SOS response induction might have resulted in the increased recombineering efficiency by indirectly blocking phage induction. Even though additional experiments are required to unravel the precise mechanistic details of the improved recombineering efficiency, we recommend the use of our method for the robust genetic manipulation of EHEC and other prophage-carrying E. coli isolates.Publication CortexVR: Immersive analysis and training of cognitive executive functions of soccer players using virtual reality and machine learning(2022) Krupitzer, Christian; Naber, Jens; Stauffert, Jan-Philipp; Mayer, Jan; Spielmann, Jan; Ehmann, Paul; Boci, Noel; Bürkle, Maurice; Ho, André; Komorek, Clemens; Heinickel, Felix; Kounev, Samuel; Becker, Christian; Latoschik, Marc ErichGoal: This paper presents an immersive Virtual Reality (VR) system to analyze and train Executive Functions (EFs) of soccer players. EFs are important cognitive functions for athletes. They are a relevant quality that distinguishes amateurs from professionals. Method: The system is based on immersive technology, hence, the user interacts naturally and experiences a training session in a virtual world. The proposed system has a modular design supporting the extension of various so-called game modes. Game modes combine selected game mechanics with specific simulation content to target particular training aspects. The system architecture decouples selection/parameterization and analysis of training sessions via a coaching app from an Unity3D-based VR simulation core. Monitoring of user performance and progress is recorded by a database that sends the necessary feedback to the coaching app for analysis. Results: The system is tested for VR-critical performance criteria to reveal the usefulness of a new interaction paradigm in the cognitive training and analysis of EFs. Subjective ratings for overall usability show that the design as VR application enhances the user experience compared to a traditional desktop app; whereas the new, unfamiliar interaction paradigm does not negatively impact the effort for using the application. Conclusion: The system can provide immersive training of EF in a fully virtual environment, eliminating potential distraction. It further provides an easy-to-use analyzes tool to compare user but also an automatic, adaptive training mode.Publication Rheological evaluation of wheat dough treated with ozone and ambient air during kneading and dough formation(2022) Moll, Sarah; Zettel, Viktoria; Delgado, Antonio; Hitzmann, BerndThe aim of this study is to compare the application of ozone with that of air during the dough kneading process. Experiments were performed on doughs made from two wheat flours of different protein contents by changing the treatment time and oxidative gas. All samples were analyzed by Farinograph, oscillatory rheometer, and dough extensibility test. Farinograph measurements showed that water absorption capacity by ozone treatment during kneading was increased by 1.8% and 2.6%, and dough development time was 47% and 37% higher than of untreated doughs made of lower and higher quality wheat flour, respectively. Dough softening was reduced by 30% and 42% by air. Ozone treatment slightly decreased the dough stability of doughs made from higher quality flour and increased dough softening for both. Ozone treatment increased the force required to break the dough strand after 5 min by 42% and 23% for samples of lower and higher quality wheat flour, respectively. The extensibility of the dough behaved inversely. The frequency sweep test showed an increase in G′ and G″.Publication Influence of finely chopped meat addition on quality parameters of minced meat(2022) Witte, Franziska; Sawas, Erik; Berger, Lisa M.; Gibis, Monika; Weiss, Jochen; Röser, Anja; Upmann, Matthias; Joeres, Eike; Juadjur, Andreas; Bindrich, Ute; Heinz, Volker; Terjung, NinoLarger processing equipment to produce minced meat could affect its structure due to intensive processing and a high energy intake in the meat mass. To assess if this would result in alterations in the minced meat quality, finely chopped meat (FCM) was added in different concentrations (15, 30, 45, 60, 75, 90, and 100%) to minced meat and quality parameters were analyzed. FCM was used to simulate different intensity of an unintended destruction of meat cells due to various processes. The amount of non-intact cells (ANIC) was determined histologically and furthermore, soluble protein content, water holding capacity, mechanical and sensory texture, and scanning electron and confocal laser scanning microscopy was applied to analyze the meat structure and quality. ANIC indicated that even adding 15% FCM was statistically (p < 0.05) distinguishable from 100% minced meat and 30% FCM had already 50 Vol.-% ANIC. In contrast, the addition of 15% or 30% FCM did not result in significant differences in drip loss of raw and cooked meat as well as mechanical and sensory texture analysis. This study showed that intensive processing might be detectable via ANIC, but that the minced meat quality was not affected.Publication Homogenization improves foaming properties of insoluble pea proteins(2022) Moll, Pascal; Salminen, Hanna; Griesshaber, Elena; Schmitt, Christophe; Weiss, JochenFoams are essential in many food applications and require surface-active ingredients such as proteins for formation and stabilization. We investigated the influence of high-pressure homogenization on foaming properties of insoluble pea protein dispersions (5% w/w) at pH 3 and 5. Unhomogenized insoluble pea protein dispersions did not foam at either pH 3 or 5, as they consisted of large insoluble pea protein aggregates with limited surface activity. At pH 3, the homogenized pea protein dispersions generated foams due to higher protein solubility and surface activity through disruption of large protein aggregates into smaller particles. The foam stability decreased with increasing homogenization pressure and number of cycles due to a reduction in continuous phase viscosity. At pH 5, the insoluble pea proteins foamed when the homogenization resulted in formation of aggregates made of smaller protein entities, which was the case for homogenization ≥ 100 MPa and three cycles. In general, the foam capacity (amount of formed foam) was higher at pH 3 due to improved protein solubility and surface activity that facilitated incorporation of air, while the foam stability (resistance against foam collapse) was better at pH 5 because of the presence of larger protein aggregates that formed thicker and more viscous films around the air bubbles benefitting retention of gas bubbles. Overall, homogenization improved the foaming properties of insoluble pea proteins at pH 3 and 5.Publication Characterization of Bacillus velezensis UTB96, demonstrating improved lipopeptide production compared to the strain B. velezensis FZB42(2022) Vahidinasab, Maliheh; Adiek, Isabel; Hosseini, Behnoush; Akintayo, Stephen Olusanmi; Abrishamchi, Bahar; Pfannstiel, Jens; Henkel, Marius; Lilge, Lars; Vögele, Ralf ; Hausmann, RudolfBacillus strains can produce various lipopeptides, known for their antifungal properties. This makes them attractive metabolites for applications in agriculture. Therefore, identification of productive wild-type strains is essential for the development of biopesticides. Bacillus velezensis FZB42 is a well-established strain for biocontrol of plant pathogens in agriculture. Here, we characterized an alternative strain, B. velezensis UTB96, that can produce higher amounts of all three major lipopeptide families, namely surfactin, fengycin, and iturin. UTB96 produces iturin A. Furthermore, UTB96 showed superior antifungal activity towards the soybean fungal pathogen Diaporthe longicolla compared to FZB42. Moreover, the additional provision of different amino acids for lipopeptide production in UTB96 was investigated. Lysine and alanine had stimulatory effects on the production of all three lipopeptide families, while supplementation of leucine, valine and isoleucine decreased the lipopeptide bioproduction. Using a 45-litre bioreactor system for upscaling in batch culture, lipopeptide titers of about 140 mg/L surfactin, 620 mg/L iturin A, and 45 mg/L fengycin were achieved. In conclusion, it becomes clear that B. velezensis UTB96 is a promising strain for further research application in the field of agricultural biological controls of fungal diseases.Publication Online process state estimation for Hansenula polymorpha cultivation with 2D fluorescence spectra-based chemometric model calibrated from a theoretical model in place of offline measurements(2023) Babor, Majharulislam; Paquet-Durand, Olivier; Berg, Christoph; Büchs, Jochen; Hitzmann, BerndThe use of 2D fluorescence spectra is a powerful, instantaneous, and highly accurate method to estimate the state of bioprocesses. The conventional approach for calibrating a chemometric model from raw spectra needs a large number of offline measurements from numerous runs, which is tedious, time-consuming, and error-prone. In addition, many process variables lack direct signal responses, which forces chemometric models to make predictions based on indirect responses. In order to predict glycerol and biomass concentrations online in batch cultivation of Hansenula polymorpha, this study substituted offline measurements with simulated values. The only data from cultivations needed to generate the chemometric model were the 2D fluorescence spectra, with the presumption that they contain sufficient information to characterize the process state at a measurement point. The remainder of the evaluation was carried out with the aid of a mathematical process model that describes the theoretical interferences between process variables in the system. It is shown that the process model parameters, including microbial growth rate, the yield of biomass from glycerol, and lag time can be determined from only the spectra by employing a model-based calibration (MBC) approach. The prediction errors for glycerol and biomass concentrations were 8.6% and 5.7%, respectively. An improved model-based calibration (IMBC) approach is presented that calibrates a chemometric model for only biomass. Biomass was predicted from a 2D fluorescence spectrum in new cultivations, and glycerol concentration was estimated from the process model utilizing predicted biomass as an input. By using this method, the prediction errors for glycerol and biomass were reduced to 5.2% and 4.7%, respectively. The findings indicate that model-based calibration, which can be carried out with only 2D fluorescence spectra gathered from prior runs, is an effective method for estimating the process state online.Publication Effect of frozen to fresh meat ratio in minced pork on its quality(2023) Tomasevic, Igor; Witte, Franziska; Kühling, Rike Elisabeth; Berger, Lisa M.; Gibis, Monika; Weiss, Jochen; Röser, Anja; Upmann, Matthias; Joeres, Eike; Juadjur, Andreas; Bindrich, Ute; Heinz, Volker; Terjung, NinoThe meat industry is typically using a mixture of fresh and frozen meat batters for minced meat production. Our goal was to find the exact threshold for fresh to frozen meat ratio capable of controlling the meat temperature during processing, but without having an adverse effect on the sensory quality of minced pork. To achieve this, the percentage of frozen meat used for the minced pork production was increased from 0% (control) to 50% (maximum) in 10% increments. To keep the minced meat temperature in control and make the processing resistant to fat smearing, the addition of 30% of frozen meat to the meat batter is sufficient. The soluble protein content, instrumental cutting force, and the sensory perceived firmness, juiciness, and inner cohesion were not affected by the addition of frozen meat. However, it has contributed to a significant increase of the drip loss and the amount of non-intact cells (ANIC). With the addition of frozen meat into the minced pork, the compliance to ANIC regulation by the German regulatory authorities is technologically (practically) almost impossible.