A new version of this entry is available:
Loading...
Article
2021
CRISPR/SpCas9‐mediated double knockout of barley Microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity, transcriptional gene silencing and plant growth
CRISPR/SpCas9‐mediated double knockout of barley Microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity, transcriptional gene silencing and plant growth
Abstract (English)
The Microrchidia (MORC) family proteins are important nuclear regulators in both animals and plants with critical roles in epigenetic gene silencing and genome stabilization. In the crop plant barley (Hordeum vulgare), seven MORC gene family members have been described. While barley HvMORC1 has been functionally characterized, very little information is available about other HvMORC paralogs. In this study, we elucidate the role of HvMORC6a and its potential interactors in regulating plant immunity via analysis of CRISPR/SpCas9‐mediated single and double knockout (dKO) mutants, hvmorc1 (previously generated and characterized by our group), hvmorc6a, and hvmorc1/6a. For generation of hvmorc1/6a, we utilized two different strategies: (i) successive Agrobacterium‐mediated transformation of homozygous single mutants, hvmorc1 and hvmorc6a, with the respective second construct, and (ii) simultaneous transformation with both hvmorc1 and hvmorc6a CRISPR/SpCas9 constructs. Total mutation efficiency in transformed homozygous single mutants ranged from 80 to 90%, while upon simultaneous transformation, SpCas9‐induced mutation in both HvMORC1 and HvMORC6a genes was observed in 58% of T0 plants. Subsequent infection assays showed that HvMORC6a covers a key role in resistance to biotrophic (Blumeria graminis) and necrotrophic (Fusarium graminearum) plant pathogenic fungi, where the dKO hvmorc1/6a showed the strongest resistant phenotype. Consistent with this, the dKO showed highest levels of basal PR gene expression and derepression of TEs. Finally, we demonstrate that HvMORC1 and HvMORC6a form distinct nucleocytoplasmic homo‐/heteromers with other HvMORCs and interact with components of the RNA‐directed DNA methylation (RdDM) pathway, further substantiating that MORC proteins are involved in the regulation of TEs in barley.
File is subject to an embargo until
This is a correction to:
A correction to this entry is available:
This is a new version of:
Notes
Publication license
Publication series
Published in
Plant biotechnology journal, 20 (2021), 1, 89-102.
https://doi.org/10.1111/pbi.13697.
ISSN: 1467-7652
Other version
Faculty
Institute
Examination date
Supervisor
Edition / version
Citation
DOI
ISSN
ISBN
Language
English
Publisher
Publisher place
Classification (DDC)
580 Plants
Collections
Original object
Standardized keywords (GND)
Sustainable Development Goals
BibTeX
@article{Galli2021,
url = {https://hohpublica.uni-hohenheim.de/handle/123456789/16825},
doi = {10.1111/pbi.13697},
author = {Galli, Matteo and Martiny, Engie and Imani, Jafargholi et al.},
title = {CRISPR/SpCas9‐mediated double knockout of barley Microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity, transcriptional gene silencing and plant growth},
journal = {Plant biotechnology journal},
year = {2021},
volume = {20},
number = {1},
}