Assessing the capability of YOLO- and transformer-based object detectors for real-time weed detection
| dc.contributor.author | Allmendinger, Alicia | |
| dc.contributor.author | Saltık, Ahmet Oğuz | |
| dc.contributor.author | Peteinatos, Gerassimos G. | |
| dc.contributor.author | Stein, Anthony | |
| dc.contributor.author | Gerhards, Roland | |
| dc.date.accessioned | 2025-11-21T10:19:46Z | |
| dc.date.available | 2025-11-21T10:19:46Z | |
| dc.date.issued | 2025 | |
| dc.date.updated | 2025-10-30T14:47:41Z | |
| dc.identifier.uri | https://doi.org/10.1007/s11119-025-10246-0 | |
| dc.identifier.uri | https://hohpublica.uni-hohenheim.de/handle/123456789/18209 | |
| dc.language.iso | eng | |
| dc.rights.license | cc_by | |
| dc.subject | Weed control | |
| dc.subject | Digital farming | |
| dc.subject | Computer vision | |
| dc.subject | Deep learning | |
| dc.subject | Single stage detector | |
| dc.subject | YOLO | |
| dc.subject | Detection transformer | |
| dc.subject.ddc | 630 | |
| dc.title | Assessing the capability of YOLO- and transformer-based object detectors for real-time weed detection | en |
| dc.type.dini | Article | |
| dcterms.bibliographicCitation | Precision agriculture, 26 (2025), 52. https://doi.org/10.1007/s11119-025-10246-0. ISSN: 1573-1618 | |
| dcterms.bibliographicCitation.articlenumber | 52 | |
| dcterms.bibliographicCitation.issn | 1573-1618 | |
| dcterms.bibliographicCitation.journaltitle | Precision agriculture | |
| dcterms.bibliographicCitation.originalpublishername | Springer US | |
| dcterms.bibliographicCitation.originalpublisherplace | New York | |
| dcterms.bibliographicCitation.volume | 26 | |
| local.export.bibtex | @article{Allmendinger2025-09-27, doi = {10.1007/s11119-025-10246-0}, url = {https://hohpublica.uni-hohenheim.de/handle/123456789/18209}, author = {Allmendinger, Alicia and Saltık, Ahmet Oğuz and G. Peteinatos, Gerassimos et al.}, title = {Assessing the capability of YOLO- and transformer-based object detectors for real-time weed detection}, journal = {Precision agriculture}, year = {2025-09-27}, volume = {26}, } | |
| local.subject.sdg | 2 | |
| local.subject.sdg | 9 | |
| local.subject.sdg | 12 | |
| local.title.full | Assessing the capability of YOLO- and transformer-based object detectors for real-time weed detection |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 7.85 KB
- Format:
- Item-specific license agreed to upon submission
- Description:
